
 International Journal of ICT and Management

June 2013 Vol – I Issue - 2 67 ISSN No. 2026-6839

Demystifying Concurrency Control in DBMS

Gajendra Singh
Director - Academics, Sikkim Manipal University, Ghana Learning Center,

KnowledgeWorkz Ltd, Accra, Ghana
gajendra.singh@smughana.com

ABSTRACT: In today’s era, sharing of information is

common everywhere in everyday life. Customers share

bank credit cards, students share books, teachers share

knowledge. The list is endless. Despite the fact that we

have learned how to share essential common resources,

sharing is not easy because of the delay that it takes for us

to acquire resources and get our tasks done in due time.

When resources are lavish, delays are low, and sharing is

relatively easy because we need to wait less. When

resources are rare, delays are high, and sharing is much

harder because we wait forever to use them. Adding more

helpdesk counters reduces the delay of information to be

given to the customers. However, when several tasks try to

use the same resource or when tasks try to share

information, it can lead to confusion and inconsistency.

The task of concurrent computing is to solve that

problem. This paper describes three key components of a

high performance concurrent parallel database

management system. First, Parallel Computing strategies

that distribute the workload of a table across the available

nodes while minimizing the overhead of concurrency.

Second, Concurrency Control Locking Strategies. Third,

Two Phase Locking Protocol that lock every item you

touch, once you release your first lock, you can’t acquire

any more locks.

KEYWORDS: Concurrency Control, Data Sharing,

Locking

I. INTRODUCTION

To control the inconsistency and confusion of sharing

information, we need to use some mechanism. One of

the concepts is Concurrency control that is used to

address conflicts with the simultaneous accessing or

altering of data that can occur with a multi-user

system. This Technique, when applied to a DBMS, is

meant to coordinate simultaneous transactions while

preserving data integrity. [3] The Concurrency is

about to control the multi-user access to the database.

When many users try to access the same resource at

the same time, concurrency control is required. To

explain the concept of concurrency control, consider

two travelers who go to the railway reservation

counter at different places but at the same time to

purchase a train ticket to the same destination on the

same train. There's only one seat left in the coach, but

without concurrency control, it's possible that both

travelers will end up purchasing a ticket for that one

seat. However, with concurrency control, the

database wouldn't allow this to happen. Both

travelers would still be able to access the train seating

database, but concurrency control would preserve

data accuracy and allow only one traveler to purchase

the seat.

This example also demonstrates the importance of

addressing this issue in a multi-user database.

Obviously, one could quickly run into problems with

the inaccurate data that can result inconsistency and

inaccuracy from several transactions occurring

simultaneously and writing over each other. The

following section provides parallel computing

strategies for implementing concurrency control.

II. PARALLEL COMPUTING

In parallel computing , database applications apply

the concept of horizontal partitioning to allocate the

tuples of each relation across multiple disk drives.

The strategy used for partitioning a relation is

independent of the storage structure used at each site.

The database administrator (DBA) for such a system

must consider a variety of alternative options for each

relation. [4] Figure 1 as given below explains the

strategies for Parallelization.

Figure 1: Design strategies for parallelization Non

Shared versus Shared architecture. [4]

 International Journal of ICT and Management

June 2013 Vol – I Issue - 2 68 ISSN No. 2026-6839

A. A DESIGN STRATEGIES FOR

PARALLELIZATION – STATIC

VERSUS DYNAMIC

One of the applications of concurrency is parallel

computing. Without concurrency, we cannot image

the concept of parallelism. And to execute a parallel

program in parallel, you must have hardware with

multiple processing elements so concurrent tasks

execute in parallel.

For example, if a busy retail shop like Melcom group

in Ghana has got only a single cash counter, the

customers will form a single queue, and wait for their

turn. If there are two cash counters, the task can be

effectively split. The customers will form two queues

and will be served twice as fast. This is an instance in

which parallel processing is an effective solution. We

can solve easily solve the critical problems with help

of Parallel computing.

Another example is ray tracing which is a common

approach for execution of images. The problem

naturally contains a great deal of concurrency since

in principle, each ray of light can be handled as an

independent task. We can queue these tasks up for

execution and use a pool of threads to run them in

parallel on a parallel computer. In other words, we

exploit the concurrency in ray tracing to create a

parallel program to render a fixed sized image in less

time. Parallelism is the idea of breaking down a

single task into multiple smaller, distinct parts.

Instead of one process doing all the work, the task

can then be parallelized, having multiple processes

working concurrently on the smaller units. This leads

to tremendous performance improvements and

optimal system utilization. The most critical part, [5]

however, is to make the decision how to divide the

original single task into smaller units of work.

Traditionally, two approaches have been used for the

implementation of parallel execution of database

systems. The main difference is whether or not the

physical data layout is used as a base – and static pre-

requisite – for dividing, thus parallelizing, the work.

 Static parallelism through physical data

partitioning – non shared

In non-shared database architectures, database files

have to be partitioned on the nodes of a multi-

computer system to enable parallel processing. Each

node ‗owns‘ a subset of the data and all access to this

data is performed exclusively by the owning node,

using a single process or thread with no provision for

intra-partition parallelism (Instead of referring to a

‗node‘ you can also find terms like ‗virtual

processors‘, a mechanism to emulate a non-shared

node on a symmetric multiprocessor (SMP) machine;

for simplicity reasons, we will refer to a node when

discussing shared nothing architectures). In other

words, a pure shared nothing system uses a

partitioned or restricted access approach to divide the

work among multiple processing nodes.

 Data ownership by node changes relatively

infrequently - database reorganization to address

changing business needs, adding or removing nodes,

and node failure are the typical reasons for change in

ownership and always imply manual administration

effort. Conceptually, it is useful to think of a non-

shared system as being very similar to a distributed

database. A transaction executing on a given node

has to send messages to other nodes that own the data

being accessed and coordinate the work done on the

other nodes, to perform the required read/write

activity. Message passing to other nodes, requesting

to execute a specific operation (function) on their

own data sets is commonly known as function

shipping. On the other hand, if simply data is

requested from a remote node, the complete data set

must be accessed and shipped from the owning node

to the requesting nodes (data shipping). This

approach has some basic disadvantages and is not

capable to address the scalability and high

availability requirements of today‘s high-end

environments:

• First, the non shared approach is not optimal for use

on the shared SMP hardware. The requirement to

physically partition data in order to derive the

benefits of parallelism is clearly an artificial and

outdated requirement on a shared everything SMP

system, where every processor has direct, equal

access to all the data.

• Second, the rigid partitioning-based parallel

execution strategy employed in the shared nothing

approach often leads to skewed resource utilization,

e.g. when it is not necessary to access all partitions of

a table, or when larger non-partitioned tables, owned

by a single node, are part of an operation. In such

situations, the tight ownership model that prevents

intra-partition parallel execution fails to utilize all

available processing power, delivering sub-optimal

use of available processing power.

• Third, due to the fact of having a physical data

partition to node relationship, shared nothing systems

are not flexible at all to adapt to changing business

requirements. When the business grows, you cannot

easily enlarge your system incrementally to address

 International Journal of ICT and Management

June 2013 Vol – I Issue - 2 69 ISSN No. 2026-6839

your growing business needs. You can upgrade all

existing nodes, keeping them symmetrical and

avoiding data re-partitioning. In most cases

upgrading all nodes is too expensive; you have to add

new nodes and to reorganize – to physically

repartition – the existing database. Having no need

for reorganization is always better than the most

sophisticated reorganization facility.

• Finally, non shared systems, due to their use of a

rigid restricted access scheme, fail to fully exploit the

potential for high fault tolerance available in

clustered systems. Undoubtedly, massively parallel

execution based on a non shared architecture with

the static data distribution can parallelize and scale

under laboratory conditions. However, the above-

mentioned deficiencies have to be addressed

appropriately in every real-life environment to satisfy

today‘s high end mission-critical requirements. A

review and a more detailed discussion about the

fundamental differences of the various cluster

architectures and the disadvantages of shared nothing

systems can be found in several Real Application

Clusters (RAC) related white papers. [6]

 Dynamic parallelism at execution time -

shared

To explain the concept of Dynamic Parallelism let us

have let us focus on Oracle‘s dynamic parallel

execution framework where all data is shared, and the

decision for parallelization and dividing the work into

smaller units is not restricted to any predetermined

static data distribution done at database setup

(creation) time. Every query has its own

characteristics of accessing, joining, and processing

different portions of data. Consequently, each SQL

statement undergoes an optimization and

parallelization process when it is parsed. When the

data changes, if a more optimal execution or

parallelization plan becomes available, or you simply

add a new node to the system, Oracle can

automatically adjust to the new situation. This

provides the highest degree of flexibility for

parallelizing any kind of operation:

• The physical data sub-setting for parallel access is

dynamically raised for each query‘s requirement

before the statement is executed.

• The degree of parallelism is optimized for every

query. Unlike in a shared nothing environment,

there‘s no necessary minimal degree of parallelism to

invoke all nodes to access all data – the fundamental

requirement to reach all of the data Operations can

run in parallel, using one, some, or all nodes of a

Real Application Clusters, depending on the current

workload, the characteristics, and the importance of

the query. As soon as the statement is optimized and

parallelized, all subsequent parallel subtasks are

known. The original process becomes the query

coordinator; parallel execution servers (PX servers)

are assigned from the common pool of parallel

execution servers on one or more nodes and start

working in parallel on the operation. Like in a shared

nothing architecture, each parallel execution server in

a shared everything architecture works independently

on its personal subset of data.

 Data or functions are sent between the parallel

processes similar – or even identical – to the above

discussed shared nothing architecture. When the

parallel plan of a request is determined, every parallel

execution server knows its data set and tasks, and the

inter-process communication is as minimal as in a

shared nothing environment. However, unlike the

shared nothing architecture, each SQL statement

executed in parallel is optimized without the need to

take any physical database layout restrictions into

account. This enables the most optimal data sub

setting for each parallel execution, thus providing

equal and in most cases even better scalability and

performance than pure shared nothing architectures.

Subsequent steps of a parallel operation are combined

and processed by one Parallel Execution server

whenever beneficial, reducing the necessity of

function and/or data shipping even more.

III. CONCURRENCY CONTROL

LOCKING STRATEGIES

There are two main concurrency control locking

strategies which we can define as given below.

 Pessimistic Locking: In the concept of

concurrency control strategy, an entity is locked

till the time it exists in the database's memory.

This bounds or prevents users from altering the

data entity that is locked. There are two types of

locks that fall under the category of pessimistic

locking: write lock and read lock. [8]

With the write lock, everyone but the holder of the

lock is prevented from reading, updating, or deleting

the entity. With read lock, other users can read the

entity, but no one except for the lock holder can

update or delete it. [9]

 Optimistic Locking: In this locking, instances of

simultaneous transactions, or collisions, are expected

 International Journal of ICT and Management

June 2013 Vol – I Issue - 2 70 ISSN No. 2026-6839

to be infrequent. In distinction with pessimistic

locking, optimistic locking doesn't try to prevent the

collisions from occurring. Instead, it aims to detect

these collisions and resolve them on the chance

occasions when they occur.

Pessimistic locking be responsible for a guarantee

that database changes are made safely. However, it

becomes less possible as the number of simultaneous

users or the number of entities involved in a

transaction increase because the prospective for

having to wait for a lock to release will increase.

Optimistic locking can improve the problem of

waiting for locks to release, but then users have the

potential to experience collisions when attempting to

update the database.

A. LOCK BASED PROTOCOL

A technique that tells the DBMS whether a particular

data item is being used by any transaction for

read/write purpose is called Lock. There are two

types of operations, i.e. read and write, whose basic

nature is different, the locks for read and write

operation may behave differently.

There challenges are less when a read operation is

performed by different transactions on the same data

item. The value of the data item, if constant, can be

read by any number of transactions at any given time.

While the write operation is rather different. When a

transaction writes some value into a data item, the

content of that data item remains in an inconsistent

state, starting from the moment when the writing

operation begins up to the moment the writing

operation is over. If any other trancaction is allowed

to read/write the value of the data item during the

write operation, those transactions will read an

inconsistent value or overwrite the value being

written by the first transaction. In both the cases

irregularities will creep into the database.

The Locking can be derived from simple rule here. If

a transaction is reading the content of a sharable data

item, then any number of other processes can be

allowed to read the content of the same data item. But

if a transaction is written into a sharable data item,

then no other transaction will be allowed to read or

write that same data item.

Based upon the rules we can classify the locks into

two types.

 Shared Lock: Shared lock can be applied on a

data item in order to read its content. The lock is

shared means that any other transaction can

acquire the shared lock on that same data item

for reading purpose.

 Exclusive Lock: An Exclusive lock can be

applied on a data item in order to both read/write

into it. The lock is exclusive in the sense that no

other transaction can acquire any kind of lock

(either shared or exclusive) on that same data

item.

The association between Shared and Exclusive Lock

can be represented by the following table 1, which is

known as Lock Matrix.

 Shared Exclusive

Shared TRUE FALSE

Exclusive FALSE FALSE

Table 1. Lock Matrix

B. THE USE OF LOCKS

If in a transaction, a data item which we want to

read/write should first be locked before the read/write

is done. After the operation is over, the transaction

should then unlock the data item so that other

transaction can lock that same data item for their

respective usage. Let us take an example to see that a

transaction to deposit Ghana Cedi 100/- from account

A to account B. The transaction should now be

written as the following:

Lock-X (A); (Exclusive Lock, to both read A‘s value

and modify it)

Read A;

A = A – 100;

Write A;

Unlock (A); (Unlocking A after the modification is

done)

Lock-X (B); (Exclusive Lock, we want to both read

B‘s value and modify it)

Read B;

B = B + 100;

Write B;

Unlock (B); (Unlocking B after the modification is

done)

Any transaction that deposits 20% amount of account

A to account C should now be written as given

below:

 International Journal of ICT and Management

June 2013 Vol – I Issue - 2 71 ISSN No. 2026-6839

Lock-S (A); (Shared Lock, we only want to read A‘s

value)

Read A;

Temp = A * 0.2;

Unlock (A); (Unlocking A)

Lock-X (C); (Exclusive Lock, we want to both read

C‘s value and modify it)

Read C;

C = C + Temp;

Write C;

Unlock (C); (Unlocking C after the modification is

done)

Now it is clear how these locking mechanisms help

us to create error free schedules. Lets see this

example of an erroneous schedule:

 T1 T2

Read A;

A = A - 100;

 Read A;

 Temp = A * 0.2;

 Read C;

 C = C + Temp;

 Write C;

Write A;

Read B;

B = B + 100;

Write B;

Based on common sense only, It has been detected

that the Context Switching is being performed before

the new value has been updated in A. T2 reads the

old value of A, and thus deposits a wrong amount in

C. If we had used the locking mechanism, this error

could never have occurred. Now if we rewrite the

schedule using the locks.

 T1 T2

Lock-X (A)

Read A;

A = A - 100;

Write A;

 Lock-S (A)

 Read A;

 Temp = A * 0.2;

 Unlock (A)

 Lock-X (C)

 Read C;

 C = C + Temp;

 Write C;

 Unlock (C)

Write A;

Unlock (A)

Lock-X (B)

Read B;

B = B + 100;

Write B;

Unlock (B)

The Schedule cannot be prepared like the above even

if we like, provided that we use the locks in the

transactions. See the first statement in T2 that

attempts to acquire a lock on A. This is not possible

because T1 has not released the exclusive lock on A,

and T2 just cannot get the shared lock it wants on A.

It must wait until the exclusive lock on A is released

by T1, and can begin its execution only after that.

So the proper schedule would look as given below:

 T1 T2

Lock-X (A)

Read A;

A = A - 100;

Write A;

Unlock (A)

 Lock-S (A)

 Read A;

 Temp = A * 0.2;

 Unlock (A)

 Lock-X (C)

 Read C;

 C = C + Temp;

 Write C;

 Unlock (C)

Lock-X (B)

Read B;

B = B + 100;

Write B;

Unlock (B)

 International Journal of ICT and Management

June 2013 Vol – I Issue - 2 72 ISSN No. 2026-6839

Finally this automatically becomes a very correct

schedule. We need not apply any manual effort to

detect or correct the errors that may crawl into the

schedule if locks are not used in them.

IV. TWO PHASE LOCKING

PROTOCOL

We can create any concurrent schedule by using

locks. The Two Phase Locking Protocol defines the

rules of how to acquire the locks on a data item and

how to release the locks. [1]

The Two Phase Locking Protocol assumes that a

transaction can only be in one of two phases.

 Growing Phase: In this phase the transaction is

able only acquire locks, but unable to release any

lock. The transaction enters the growing phase as

soon as it acquires the first lock it wants. From

now on it has no option but to keep acquiring all

the locks it would need. It cannot release any

lock at this phase even if it has finished working

with a locked data item. Ultimately the

transaction reaches a point where all the lock it

may need has been acquired. This point is called

Lock Point.

 Shrinking Phase: Once the Lock Point has been

reached, the transaction enters the shrinking

phase. In this phase the transaction can only

release locks, but cannot acquire any new lock.

[8] The transaction enters the shrinking phase as

soon as it releases the first lock after crossing the

Lock Point. From now on it has no option but to

keep releasing all the acquired locks.

There are two different versions of the Two

Phase Locking Protocol. One is called the Strict

Two Phase Locking Protocol and the other one is

called the Rigorous Two Phase Locking

Protocol.

 Strict Two Phase Locking Protocol :

According to this protocol, a transaction can

release all the shared locks after the Lock Point

has been reached, but it cannot release any of the

exclusive locks until the transaction commits.

This protocol helps in creating cascade less

schedule. [7]

While creating a concurrent schedule there is typical

problem called Cascading Scheeule. Let us Consider

the following schedule once again.

 T1 T2

Lock-X (A)

Read A;

A = A - 100;

Write A;

Unlock (A)

 Lock-S (A)

 Read A;

 Temp = A * 0.2;

 Unlock (A)

 Lock-X (C)

 Read C;

 C = C + Temp;

 Write C;

 Unlock (C)

Lock-X (B)

Read B;

B = B + 100;

Write B;

Unlock (B)

This schedule is hypothetically correct, but a very

strange kind of problem may arise here. T1 releases

the exclusive lock on A, and immediately after that

the Context Switch is made. T2 acquires a shared

lock on A to read its value, perform a calculation,

update the content of account C and then issue

COMMIT. Though, T1 is not finished yet. What if

the remaining portion of T1 encounters a problem

(power failure, disc failure etc.) and cannot be

committed? In this case T1 should be rolled back and

the old value of A should be restored. In such a case

T2, which has read the updated (but not committed)

value of A and calculated the value of C based on this

value, must also have to be rolled back. We have to

roll back T2 for no fault of T2 itself, but because we

proceeded with T2 depending on a value which has

not yet been committed. This phenomenon of rolling

back a child transaction if the parent transaction is

rolled back is called Cascading Rollback, which

causes a notable loss of processing power and

execution time.

While Using Strict Two Phase Locking Protocols,

Cascading Rollback can be prevented. In Strict Two

Phase Locking Protocols a transaction cannot release

any of its acquired exclusive locks until the

transaction commits. In such a case, T1 would not

release the exclusive lock on A until it finally

commits, which makes it impossible for T2 to acquire

 International Journal of ICT and Management

June 2013 Vol – I Issue - 2 73 ISSN No. 2026-6839

the shared lock on A at a time when A‘s value has

not been committed. This makes it impossible for a

schedule to be cascaded. [10]

 Rigorous Two Phase Locking Protocol

In this type of Protocol, a transaction is not allowed

to release either shared or exclusive locks until it

commits i.e. until the transaction commits, other

transaction might acquire a shared lock on a data item

on which the uncommitted transaction has a shared

lock; but cannot acquire any lock on a data item on

which the uncommitted transaction has an exclusive

lock. [11]

V. CONCLUSIONS AND FUTURE

RESEARCH DIRECTIOINS

This Paper provides the conclusion of techniques to

realize a better understanding of Concurrent,

parallel, scalable, high performance database

management system. We described the design

strategies for parallelization – static verses dynamic

to distribute the workload of a query across multiple

nodes. The physical design of concurrent database

management systems is an active area of research.

From the above we can find the below points

regarding concurrency control.

 While implementing the lock and unlock

commands, we must ensure that these are

atomic operations. An operating system

synchronization mechanism should be used

to ensure the atomicity of these operations

when several instances of the lock manager

can execute concurrently.

 We can prevent deadlock by giving priority

to each transaction and confirming that

lower priority transactions are not allowed

to wait or higher priority truncations (or

vice versa).

 We have found that the Oracle server uses a

multiversion concurrency control scheme in

which readers never wait; in fact, readers

never get locks, and detect conflicts by

checking if a block changed since they read

it while.

 Now it is also clear that there are cases

when pessimistic locking will perform

better, it is not the case that optimistic

concurrency control has no concurrency

control overhead; rather, the locking

overheads of lock-based approaches are

replaced with the overheads of recording

read-lists and write-lists of transactions,

checking for conflicts, and copying changes

from the private workspace. In optimistic

concurrency control, the basic premise is

that most transactions will not conflict with

other transactions, and the idea is to be as

permissive as possible in allowing

transactions to execute.

The Author has described the overall

Concurrency control problem and have

explained the ideas of concurrency and

parallelism. I closed with a brief hint at how

to think about concurrency algorithms. The

parallel hardware required to run a

concurrent program or transactions can be

considered for future research area.

VI. REFERENCES

[1] Ambler, Scott. Introduction to Concurrency

Control, 2006

[2] Andrew S. Tanenbaum, Albert S Woodhull

(2006): ―Operating Systems Design and

Implementation”, 3rd Edition, Prentice Hall,

ISBN 0-13-142938-8

[3] Coronel, Carlos, Peter Rob (2004)

―Database Systems”, sixth edition. Thomson

Course Technology

[4] DeWitt and J. Gray (1992) ―Parallel

database systems: the future of high

performance database systems‖

Communications of the ACM, 35 (6): 85–

98,.

[5] J. DeWitt and Gerber. R. (1985)

―Multiprocessor hash-based join algorithms‖

in Proceedings of the Very Large Databases

Conference,.

[6] K. Hua and C. Lee (1990) ―An Adaptive

Data Placement Scheme for Parallel

Database Computer Systems‖ in

Proceedings of the Very Large Databases

Conference

[7] Kumar, V. (2012) ―Transaction

Management Concurrency Control

Mechanisms‖

 International Journal of ICT and Management

June 2013 Vol – I Issue - 2 74 ISSN No. 2026-6839

[8] M. Livny, S. Khoshafian, and H. Boral

(1987) ―Multi-disk management algorithms‖

in Proceedings of the 1987 ACM

SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, pages

69–77

[9] Oracle Technology Network ‘Oracle 9i Real

Application Clusters – Cache fusion delivers

scalability’ of February 2002

[10] Ricardo (2012) Catherine. Databases

Illuminated, second Ed. p386-387 Jones &

Bartlett Learning

[11] Silberschatz, Avi; Galvin, Peter; Gagne,

Greg (2008). Operating Systems Concepts,

8th edition.

