194 11

International Journal of ICT and Management

Demystifying Concurrency Control in DBMS

Gajendra Singh
Director - Academics, Sikkim Manipal University, Ghana Learning Center,
KnowledgeWorkz Ltd, Accra, Ghana
gajendra.singh@smughana.com

ABSTRACT: In today’s era, sharing of information is
common everywhere in everyday life. Customers share
bank credit cards, students share books, teachers share
knowledge. The list is endless. Despite the fact that we
have learned how to share essential common resources,
sharing is not easy because of the delay that it takes for us
to acquire resources and get our tasks done in due time.
When resources are lavish, delays are low, and sharing is
relatively easy because we need to wait less. When
resources are rare, delays are high, and sharing is much
harder because we wait forever to use them. Adding more
helpdesk counters reduces the delay of information to be
given to the customers. However, when several tasks try to
use the same resource or when tasks try to share
information, it can lead to confusion and inconsistency.
The task of concurrent computing is to solve that
problem. This paper describes three key components of a
high performance concurrent parallel database
management system. First, Parallel Computing strategies
that distribute the workload of a table across the available
nodes while minimizing the overhead of concurrency.
Second, Concurrency Control Locking Strategies. Third,
Two Phase Locking Protocol that lock every item you
touch, once you release your first lock, you can’t acquire
any more locks.

KEYWORDS: Concurrency Control, Data Sharing,
Locking

. INTRODUCTION

To control the inconsistency and confusion of sharing
information, we need to use some mechanism. One of
the concepts is Concurrency control that is used to
address conflicts with the simultaneous accessing or
altering of data that can occur with a multi-user
system. This Technique, when applied to a DBMS, is
meant to coordinate simultaneous transactions while
preserving data integrity. [3] The Concurrency is
about to control the multi-user access to the database.
When many users try to access the same resource at
the same time, concurrency control is required. To
explain the concept of concurrency control, consider
two travelers who go to the railway reservation
counter at different places but at the same time to
purchase a train ticket to the same destination on the

June 2013 Vol — | Issue - 2

67

same train. There's only one seat left in the coach, but
without concurrency control, it's possible that both
travelers will end up purchasing a ticket for that one
seat. However, with concurrency control, the
database wouldn't allow this to happen. Both
travelers would still be able to access the train seating
database, but concurrency control would preserve
data accuracy and allow only one traveler to purchase
the seat.

This example also demonstrates the importance of
addressing this issue in a multi-user database.
Obviously, one could quickly run into problems with
the inaccurate data that can result inconsistency and
inaccuracy from several transactions occurring
simultaneously and writing over each other. The
following section provides parallel computing
strategies for implementing concurrency control.

1. PARALLEL COMPUTING

In parallel computing , database applications apply
the concept of horizontal partitioning to allocate the
tuples of each relation across multiple disk drives.
The strategy used for partitioning a relation is
independent of the storage structure used at each site.
The database administrator (DBA) for such a system
must consider a variety of alternative options for each
relation. [4] Figure 1 as given below explains the
strategies for Parallelization.

Shared Everything

» No Data Partitioning Required

Shared Nothing
 Static Data Partitioning is a pre-
requirement

4; As AE
Figure 1: Design strategies for parallelization Non
Shared versus Shared architecture. [4]

"L L L

ISSN No. 2026-6839

JJ!C/'J

A. A DESIGN STRATEGIES FOR
PARALLELIZATION - STATIC
VERSUS DYNAMIC

One of the applications of concurrency is parallel
computing. Without concurrency, we cannot image
the concept of parallelism. And to execute a parallel
program in parallel, you must have hardware with
multiple processing elements so concurrent tasks
execute in parallel.

For example, if a busy retail shop like Melcom group
in Ghana has got only a single cash counter, the
customers will form a single queue, and wait for their
turn. If there are two cash counters, the task can be
effectively split. The customers will form two queues
and will be served twice as fast. This is an instance in
which parallel processing is an effective solution. We
can solve easily solve the critical problems with help
of Parallel computing.

Another example is ray tracing which is a common
approach for execution of images. The problem
naturally contains a great deal of concurrency since
in principle, each ray of light can be handled as an
independent task. We can queue these tasks up for
execution and use a pool of threads to run them in
parallel on a parallel computer. In other words, we
exploit the concurrency in ray tracing to create a
parallel program to render a fixed sized image in less
time. Parallelism is the idea of breaking down a
single task into multiple smaller, distinct parts.
Instead of one process doing all the work, the task
can then be parallelized, having multiple processes
working concurrently on the smaller units. This leads
to tremendous performance improvements and
optimal system utilization. The most critical part, [5]
however, is to make the decision how to divide the
original single task into smaller units of work.
Traditionally, two approaches have been used for the
implementation of parallel execution of database
systems. The main difference is whether or not the
physical data layout is used as a base — and static pre-
requisite — for dividing, thus parallelizing, the work.

e Static parallelism through physical data
partitioning — non shared

In non-shared database architectures, database files
have to be partitioned on the nodes of a multi-
computer system to enable parallel processing. Each
node ‘owns’ a subset of the data and all access to this
data is performed exclusively by the owning node,
using a single process or thread with no provision for
intra-partition parallelism (Instead of referring to a

June 2013 Vol — | Issue - 2

68

International Journal of ICT and Management

‘node’ you can also find terms like ‘virtual
processors’, a mechanism to emulate a non-shared
node on a symmetric multiprocessor (SMP) machine;
for simplicity reasons, we will refer to a node when
discussing shared nothing architectures). In other
words, a pure shared nothing system uses a
partitioned or restricted access approach to divide the
work among multiple processing nodes.

Data ownership by node changes relatively
infrequently - database reorganization to address
changing business needs, adding or removing nodes,
and node failure are the typical reasons for change in
ownership and always imply manual administration
effort. Conceptually, it is useful to think of a non-
shared system as being very similar to a distributed
database. A transaction executing on a given node
has to send messages to other nodes that own the data
being accessed and coordinate the work done on the
other nodes, to perform the required read/write
activity. Message passing to other nodes, requesting
to execute a specific operation (function) on their
own data sets is commonly known as function
shipping. On the other hand, if simply data is
requested from a remote node, the complete data set
must be accessed and shipped from the owning node
to the requesting nodes (data shipping). This
approach has some basic disadvantages and is not
capable to address the scalability and high
availability requirements of today’s high-end
environments:

* First, the non shared approach is not optimal for use
on the shared SMP hardware. The requirement to
physically partition data in order to derive the
benefits of parallelism is clearly an artificial and
outdated requirement on a shared everything SMP
system, where every processor has direct, equal
access to all the data.

* Second, the rigid partitioning-based parallel
execution strategy employed in the shared nothing
approach often leads to skewed resource utilization,
e.g. when it is not necessary to access all partitions of
a table, or when larger non-partitioned tables, owned
by a single node, are part of an operation. In such
situations, the tight ownership model that prevents
intra-partition parallel execution fails to utilize all
available processing power, delivering sub-optimal
use of available processing power.

* Third, due to the fact of having a physical data
partition to node relationship, shared nothing systems
are not flexible at all to adapt to changing business
requirements. When the business grows, you cannot
easily enlarge your system incrementally to address

ISSN No. 2026-6839

JJ!C/'J

your growing business needs. You can upgrade all
existing nodes, keeping them symmetrical and
avoiding data re-partitioning. In most cases
upgrading all nodes is too expensive; you have to add
new nodes and to reorganize — to physically
repartition — the existing database. Having no need
for reorganization is always better than the most
sophisticated reorganization facility.

* Finally, non shared systems, due to their use of a
rigid restricted access scheme, fail to fully exploit the
potential for high fault tolerance available in
clustered systems. Undoubtedly, massively parallel
execution based on a non shared architecture with
the static data distribution can parallelize and scale
under laboratory conditions. However, the above-
mentioned deficiencies have to be addressed
appropriately in every real-life environment to satisfy
today’s high end mission-critical requirements. A
review and a more detailed discussion about the
fundamental differences of the various cluster
architectures and the disadvantages of shared nothing
systems can be found in several Real Application
Clusters (RAC) related white papers. [6]

e Dynamic parallelism at execution time -
shared

To explain the concept of Dynamic Parallelism let us
have let us focus on Oracle’s dynamic parallel
execution framework where all data is shared, and the
decision for parallelization and dividing the work into
smaller units is not restricted to any predetermined
static data distribution done at database setup
(creation) time. Every query has its own
characteristics of accessing, joining, and processing
different portions of data. Consequently, each SQL
statement undergoes an optimization and
parallelization process when it is parsed. When the
data changes, if a more optimal execution or
parallelization plan becomes available, or you simply
add a new node to the system, Oracle can
automatically adjust to the new situation. This
provides the highest degree of flexibility for
parallelizing any kind of operation:

 The physical data sub-setting for parallel access is
dynamically raised for each query’s requirement
before the statement is executed.

» The degree of parallelism is optimized for every
query. Unlike in a shared nothing environment,
there’s no necessary minimal degree of parallelism to
invoke all nodes to access all data — the fundamental
requirement to reach all of the data Operations can
run in parallel, using one, some, or all nodes of a

June 2013 Vol — | Issue - 2

69

International Journal of ICT and Management

Real Application Clusters, depending on the current
workload, the characteristics, and the importance of
the query. As soon as the statement is optimized and
parallelized, all subsequent parallel subtasks are
known. The original process becomes the query
coordinator; parallel execution servers (PX servers)
are assigned from the common pool of parallel
execution servers on one or more nodes and start
working in parallel on the operation. Like in a shared
nothing architecture, each parallel execution server in
a shared everything architecture works independently
on its personal subset of data.

Data or functions are sent between the parallel
processes similar — or even identical — to the above
discussed shared nothing architecture. When the
parallel plan of a request is determined, every parallel
execution server knows its data set and tasks, and the
inter-process communication is as minimal as in a
shared nothing environment. However, unlike the
shared nothing architecture, each SQL statement
executed in parallel is optimized without the need to
take any physical database layout restrictions into
account. This enables the most optimal data sub
setting for each parallel execution, thus providing
equal and in most cases even better scalability and
performance than pure shared nothing architectures.
Subsequent steps of a parallel operation are combined
and processed by one Parallel Execution server
whenever beneficial, reducing the necessity of
function and/or data shipping even more.

1. CONCURRENCY CONTROL
LOCKING STRATEGIES

There are two main concurrency control locking
strategies which we can define as given below.

e Pessimistic Locking: In the concept of
concurrency control strategy, an entity is locked
till the time it exists in the database's memory.
This bounds or prevents users from altering the
data entity that is locked. There are two types of
locks that fall under the category of pessimistic
locking: write lock and read lock. [8]

With the write lock, everyone but the holder of the
lock is prevented from reading, updating, or deleting
the entity. With read lock, other users can read the
entity, but no one except for the lock holder can
update or delete it. [9]

Optimistic Locking: In this locking, instances of
simultaneous transactions, or collisions, are expected

ISSN No. 2026-6839

JJ!C/'J

to be infrequent. In distinction with pessimistic
locking, optimistic locking doesn't try to prevent the
collisions from occurring. Instead, it aims to detect
these collisions and resolve them on the chance
occasions when they occur.

Pessimistic locking be responsible for a guarantee
that database changes are made safely. However, it
becomes less possible as the number of simultaneous
users or the number of entities involved in a
transaction increase because the prospective for
having to wait for a lock to release will increase.

Optimistic locking can improve the problem of
waiting for locks to release, but then users have the
potential to experience collisions when attempting to
update the database.

A. LOCK BASED PROTOCOL

A technique that tells the DBMS whether a particular
data item is being used by any transaction for
read/write purpose is called Lock. There are two
types of operations, i.e. read and write, whose basic
nature is different, the locks for read and write
operation may behave differently.

There challenges are less when a read operation is
performed by different transactions on the same data
item. The value of the data item, if constant, can be
read by any number of transactions at any given time.

While the write operation is rather different. When a
transaction writes some value into a data item, the
content of that data item remains in an inconsistent
state, starting from the moment when the writing
operation begins up to the moment the writing
operation is over. If any other trancaction is allowed
to read/write the value of the data item during the
write operation, those transactions will read an
inconsistent value or overwrite the value being
written by the first transaction. In both the cases
irregularities will creep into the database.

The Locking can be derived from simple rule here. If
a transaction is reading the content of a sharable data
item, then any number of other processes can be
allowed to read the content of the same data item. But
if a transaction is written into a sharable data item,
then no other transaction will be allowed to read or
write that same data item.

Based upon the rules we can classify the locks into
two types.

June 2013 Vol — | Issue - 2

70

International Journal of ICT and Management

e Shared Lock: Shared lock can be applied on a
data item in order to read its content. The lock is
shared means that any other transaction can
acquire the shared lock on that same data item
for reading purpose.

e Exclusive Lock: An Exclusive lock can be
applied on a data item in order to both read/write
into it. The lock is exclusive in the sense that no
other transaction can acquire any kind of lock
(either shared or exclusive) on that same data
item.

The association between Shared and Exclusive Lock
can be represented by the following table 1, which is
known as Lock Matrix.

Shared Exclusive
Shared TRUE FALSE
Exclusive FALSE FALSE

Table 1. Lock Matrix
B. THE USE OF LOCKS

If in a transaction, a data item which we want to
read/write should first be locked before the read/write
is done. After the operation is over, the transaction
should then unlock the data item so that other
transaction can lock that same data item for their
respective usage. Let us take an example to see that a
transaction to deposit Ghana Cedi 100/- from account
A to account B. The transaction should now be
written as the following:

Lock-X (A); (Exclusive Lock, to both read A’s value
and modify it)

Read A;

A=A-100;

Write A;

Unlock (A); (Unlocking A after the modification is
done)

Lock-X (B); (Exclusive Lock, we want to both read
B’s value and modify it)

Read B;

B =B + 100;

Write B;

Unlock (B); (Unlocking B after the modification is
done)

Any transaction that deposits 20% amount of account
A to account C should now be written as given
below:

ISSN No. 2026-6839

JJ!C/'J

Lock-S (A); (Shared Lock, we only want to read A’s
value)

Read A;

Temp=A*0.2;

Unlock (A); (Unlocking A)

Lock-X (C); (Exclusive Lock, we want to both read
C’s value and modify it)

Read C;

C=C+ Temp;

Write C;

Unlock (C); (Unlocking C after the modification is
done)

Now it is clear how these locking mechanisms help
us to create error free schedules. Lets see this
example of an erroneous schedule:

Tl 12

Read A,

A=A-100;
Read A,
Temp=A=*0.2;
Read C;
C=C+ Temp;
Write C;

Write A;

Read B;

B =B + 100;

Write B;

Based on common sense only, It has been detected
that the Context Switching is being performed before
the new value has been updated in A. T2 reads the
old value of A, and thus deposits a wrong amount in
C. If we had used the locking mechanism, this error
could never have occurred. Now if we rewrite the
schedule using the locks.

Tl T2

Lock-X (A)

Read A,

A=A-100;

Write A;
Lock-S (A)
Read A;
Temp=A=*0.2;
Unlock (A)

June 2013 Vol — | Issue - 2

71

International Journal of ICT and Management

Lock-X (C)
Read C;
C=C+ Temp;
Write C;
Unlock (C)

Write A,

Unlock (A)

Lock-X (B)

Read B;

B =B + 100;

Write B;

Unlock (B)

The Schedule cannot be prepared like the above even
if we like, provided that we use the locks in the
transactions. See the first statement in T2 that
attempts to acquire a lock on A. This is not possible
because T1 has not released the exclusive lock on A,
and T2 just cannot get the shared lock it wants on A.
It must wait until the exclusive lock on A is released
by T1, and can begin its execution only after that.

So the proper schedule would look as given below:

Tl T2

Lock-X (A)

Read A;

A=A-100;

Write A;

Unlock (A)
Lock-S (A)
Read A;
Temp=A=*0.2;
Unlock (A)
Lock-X (C)
Read C;
C=C+ Temp;
Write C;
Unlock (C)

Lock-X (B)

Read B;

B =B + 100;

Write B;

Unlock (B)

ISSN No. 2026-6839

JJ!C/'J

Finally this automatically becomes a very correct
schedule. We need not apply any manual effort to
detect or correct the errors that may crawl into the
schedule if locks are not used in them.

V. TWO PHASE LOCKING
PROTOCOL

We can create any concurrent schedule by using
locks. The Two Phase Locking Protocol defines the
rules of how to acquire the locks on a data item and
how to release the locks. [1]
The Two Phase Locking Protocol assumes that a
transaction can only be in one of two phases.

e Growing Phase: In this phase the transaction is
able only acquire locks, but unable to release any
lock. The transaction enters the growing phase as
soon as it acquires the first lock it wants. From
now on it has no option but to keep acquiring all
the locks it would need. It cannot release any
lock at this phase even if it has finished working
with a locked data item. Ultimately the
transaction reaches a point where all the lock it
may need has been acquired. This point is called
Lock Point.

¢ Shrinking Phase: Once the Lock Point has been
reached, the transaction enters the shrinking
phase. In this phase the transaction can only
release locks, but cannot acquire any new lock.
[8] The transaction enters the shrinking phase as
soon as it releases the first lock after crossing the
Lock Point. From now on it has no option but to
keep releasing all the acquired locks.
There are two different versions of the Two
Phase Locking Protocol. One is called the Strict
Two Phase Locking Protocol and the other one is
called the Rigorous Two Phase Locking
Protocol.

e Strict Two Phase Locking Protocol
According to this protocol, a transaction can
release all the shared locks after the Lock Point
has been reached, but it cannot release any of the
exclusive locks until the transaction commits.
This protocol helps in creating cascade less
schedule. [7]

While creating a concurrent schedule there is typical
problem called Cascading Scheeule. Let us Consider
the following schedule once again.

T1 T2

June 2013 Vol — | Issue - 2

International Journal of ICT and Management

Lock-X (A)

Read A,

A=A-100;

Write A;

Unlock (A)
Lock-S (A)
Read A;
Temp=A*0.2;
Unlock (A)
Lock-X (C)
Read C;
C=C+ Temp;
Write C;
Unlock (C)

Lock-X (B)

Read B;

B =B + 100;

Write B;

Unlock (B)

This schedule is hypothetically correct, but a very
strange kind of problem may arise here. T1 releases
the exclusive lock on A, and immediately after that
the Context Switch is made. T2 acquires a shared
lock on A to read its value, perform a calculation,
update the content of account C and then issue
COMMIT. Though, T1 is not finished yet. What if
the remaining portion of T1 encounters a problem
(power failure, disc failure etc.) and cannot be
committed? In this case T1 should be rolled back and
the old value of A should be restored. In such a case
T2, which has read the updated (but not committed)
value of A and calculated the value of C based on this
value, must also have to be rolled back. We have to
roll back T2 for no fault of T2 itself, but because we
proceeded with T2 depending on a value which has
not yet been committed. This phenomenon of rolling
back a child transaction if the parent transaction is
rolled back is called Cascading Rollback, which
causes a notable loss of processing power and
execution time.

While Using Strict Two Phase Locking Protocols,
Cascading Rollback can be prevented. In Strict Two
Phase Locking Protocols a transaction cannot release
any of its acquired exclusive locks until the
transaction commits. In such a case, T1 would not
release the exclusive lock on A until it finally
commits, which makes it impossible for T2 to acquire

ISSN No. 2026-6839

_']Jié/',! /1

the shared lock on A at a time when A’s value has
not been committed. This makes it impossible for a
schedule to be cascaded. [10]

e Rigorous Two Phase Locking Protocol

In this type of Protocol, a transaction is not allowed
to release either shared or exclusive locks until it
commits i.e. until the transaction commits, other
transaction might acquire a shared lock on a data item
on which the uncommitted transaction has a shared
lock; but cannot acquire any lock on a data item on
which the uncommitted transaction has an exclusive
lock. [11]

V. CONCLUSIONS AND FUTURE
RESEARCH DIRECTIOINS

This Paper provides the conclusion of techniques to
realize a better understanding of Concurrent,
parallel, scalable, high performance database
management system. We described the design
strategies for parallelization — static verses dynamic
to distribute the workload of a query across multiple
nodes. The physical design of concurrent database
management systems is an active area of research.
From the above we can find the below points
regarding concurrency control.

e While implementing the lock and unlock
commands, we must ensure that these are
atomic operations. An operating system
synchronization mechanism should be used
to ensure the atomicity of these operations
when several instances of the lock manager
can execute concurrently.

e We can prevent deadlock by giving priority
to each transaction and confirming that
lower priority transactions are not allowed
to wait or higher priority truncations (or
vice versa).

e We have found that the Oracle server uses a
multiversion concurrency control scheme in
which readers never wait; in fact, readers
never get locks, and detect conflicts by
checking if a block changed since they read
it while.

e Now it is also clear that there are cases
when pessimistic locking will perform
better, it is not the case that optimistic
concurrency control has no concurrency
control overhead; rather, the locking
overheads of lock-based approaches are
replaced with the overheads of recording

June 2013 Vol — | Issue - 2

73

VI.

[1]

(2]

[3]

[4]

[5]

6]

[7]

International Journal of ICT and Management

read-lists and write-lists of transactions,
checking for conflicts, and copying changes
from the private workspace. In optimistic
concurrency control, the basic premise is
that most transactions will not conflict with
other transactions, and the idea is to be as
permissive as possible in allowing
transactions to execute.

The Author has described the overall
Concurrency control problem and have
explained the ideas of concurrency and
parallelism. I closed with a brief hint at how
to think about concurrency algorithms. The
parallel hardware required to run a
concurrent program or transactions can be
considered for future research area.

REFERENCES

Ambler, Scott. Introduction to Concurrency
Control, 2006

Andrew S. Tanenbaum, Albert S Woodhull
(2006): “Operating Systems Design and
Implementation ”, 3rd Edition, Prentice Hall,
ISBN 0-13-142938-8

Coronel, Carlos, Peter Rob (2004)
“Database Systems ”, sixth edition. Thomson
Course Technology

DeWitt and J. Gray (1992) “Parallel
database systems: the future of high
performance database systems”

Communications of the ACM, 35 (6): 85—
98,.

J. DeWitt and Gerber. R. (1985)
“Multiprocessor hash-based join algorithms”
in Proceedings of the Very Large Databases
Conference,.

K. Hua and C. Lee (1990) “An Adaptive
Data Placement Scheme for Parallel
Database Computer Systems” in
Proceedings of the Very Large Databases
Conference

“Transaction
Control

Kumar, V.
Management
Mechanisms”

(2012)
Concurrency

ISSN No. 2026-6839

[8]

[9]

JJ!C/'J

M. Livny, S. Khoshafian, and H. Boral
(1987) “Multi-disk management algorithms”
in Proceedings of the 1987 ACM
SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages
69-77

Oracle Technology Network ‘Oracle 9i Real
Application Clusters — Cache fusion delivers
scalability’ of February 2002

[10]Ricardo (2012) Catherine. Databases

Illuminated, second Ed. p386-387 Jones &
Bartlett Learning

[11]Silberschatz, Avi; Galvin, Peter; Gagne,

Greg (2008). Operating Systems Concepts,
8th edition.

June 2013 Vol — | Issue - 2

International Journal of ICT and Management

74

ISSN No. 2026-6839

