_‘}J 2 TV

International Journal of ICT and Management

Configuration Management: A comparative Analysis of
CVS and SVN

Arnold Mashud Abukari
System/Telecom Engineer, Sunberry Corporations FZE
amashud@sunberrycorp.com

ABSTRACT: The growth of information systems is at a
very fast pace in both developed and developing countries.
A major driving force in the field of Information
Technology is software. This software largely controls the
hardware components of systems geared towards
increasing productivity within an establishment. There is
the need for companies and software developers to keep
track of the configuration changes on their source codes.
This has given rise to the need for proper configuration
management in the field software engineering by
developers and establishments with so much interest in
their source codes. The area of software engineering
responsible for controlling software evolution from a
source code is configuration management (CM).
Configuration management (CM) is a systems
engineering process for establishing and maintaining
consistency of a product's performance, functional and
physical attributes with its requirements, design and
operational information throughout its life. The intent of
this paper is to analyze configuration management
through a comparative analysis of the Concurrent
Version System (CVS) and Subversions (SVN). There has
been a report of substantial advantages of SVN over CVS
in terms of configuration management (CM). This paper
also seeks to clarify such reports by making a comparative
analysis between the two software versioning and revision
control systems.

KEYWORDS: Configuration management, CVS, SVN

I INTRODUCTION

It is very essential in the field of Information
Technology (IT) industry, telecommunication
industry, manufacturing industry and all industries
dealing with processes and reviews of products to
inculcate configuration management in their
practices. This paper intends to highlight
configuration management in software engineering
taking telescopic eye on the Concurrent Version
System (CVS) and Subversions (SVN).

A CONFIGURATION MANAGEMENT
Configuration management is a collection of

processes and tools that promote consistency,
monitor changes, and provide updates and consistent

October 2013 Vol — | Issue - 3

157

documentation and visibility. By building and
maintaining configuration management best-
practices, one can expect several benefits such as
improved product availability and lower costs. These
products could be software, networking, database and
hardware related. Lack of best practices in
configuration management (CM) on a product could
result to one or more of the following:

e Inability to monitor user impacts on product
changes

e Time to resolve problems from such
products is usually high

e Higher product cost because of unused
product components

e Lower availability and increased reactive
support issues

The purpose of Software Configuration Management
is to establish and maintain the integrity of the
products of the software project throughout the
project's software life cycle. Software Configuration
Management involves identifying configuration items
for the software project, controlling these
configuration items and changes to them, and
recording and reporting status and change activity for
these configuration items [7].

In product development like the software, changes
are made to correct errors and/or to provide
enhancements to the core products. These changes
could come as a result of different contributions from
different people working on the same product. There
is therefore the need to institute control and merge
the inputs made by the various contributors whiles
having the option to revert back to a previous state of
the product when changes appear to have an adverse
effect on the product. This quest of keeping the
inevitable changes under control requires an efficient
Configuration Management system (CM).

Every organization requires standards and well
structured policies to regulate how changes are done

ISSN No. 2026-6839

5 7
1R v

using a well thought-through
Management Plan (CMP).

Configuration

Academic research and industry analysis show that
software CM (SCM) is clearly evolving in ways that
will support the needs of product lines. Westfechtel
and Conradi, observing the overlap between software
architecture and SCM, describe five approaches for
the integration of the two disciplines [2].

In the field of Industry, Schwaber at Forrester
Research observes that today's SCM market
encompasses a range of four solution segments of
cumulatively increasing functionality: (1) version
control, (2) software configuration management, (3)
process-centric software configuration management,
and (4) application life-cycle management [3].
According to Schwaber and colleagues, all the major
vendors now offer process-centric SCM solutions,
and there is growing interest in expanding SCM into
application life-cycle management.

The IEEE/ANSI came out with a detailed standard to
outline a comprehensive configuration management
plan (CMP) in their IEEE 1987a [4]. These plans
contain change control policies, describe
organizational roles, define product life cycles, and,
in general, make a fine starting point for an
organization wishing to craft its own CM plan.

B. CONFIGURATION MANAGEMENT
PROCESS FLOW

identify
Canfiguration
ams

¥

‘ Parform Audt

Figure 1: Configuration management process flow

October 2013 Vol — | Issue - 3

158

International Journal of ICT and Management

1. CONCURRENT VERSION SYSTEM

The Concurrent Versioning System (CVS) is a type
of version control system. A version control system
keeps track of all activities and changes made in a set
of files or project in the field of software
development or engineering. This allows developers
across networks or locations to work in a
collaborative way towards completing the project.

CVS allows multiple people to be working on the
same set of assets at the same time. CVS works on
the principle of Copy-Modify-Merge principle. This
means you take a copy of the assets, modify your
local copy, and merge your changes back into the
master repository. The Concurrent Versioning
System was developed by Dick Grune as shell scripts
in July 1986. [11]

A CVS WORKING PROCESSES

The Concurrent version systems follow a working
process to enable the developers contribute in a
collaborative manner. Below are the processes
involved:

e Creating a Repository (one time only)
e Importing Assets

e Checking out a working copy

e Viewing changes

e Committing changes

e Working with previous versions

B. COMMANDS FOR CREATING CVS
REPOSITORY

A working repository is the backbone of every
project that needs review from developers. In CVS,
the repository are created using the below set of
commands:

% export CVSROOT=~/CVSRoot
% cvs init

% Is -1 ${CVSROOT}
CVSROOT/

drwx------

After a successful creation of the repository, there is
a need to import assets. below is an example of a
command for importing an asset:

ISSN No. 2026-6839

5 7
1R v

$ cvs import -m “Imported sources™ arnold/dir
filename start

It is interesting to note that importing the assets
doesn't touch the files in the current directory and as
such changes in the working directory are not
tracked.

C. CVS DEVELOPMENT STATUS

The latest release for CVS came out on 8th May,
2008 and since then there has been maintenance to
fix bugs in the CVS repository [10]. However, there
has not been reports on bugs since the last update on
CVS.

D. CVS SUCESSORS

CVS is reported to have been developed from a
versioning control system called Revision Control
System (RCS) which manages individual files but not
projects. Though CVS came to solve this by
managing projects, developers still require additional
features that CVS does not provide, needs to alter the
operational models in CVS as well as improve
developer productivity. These interests have given
rise to the phrase YACC (Yet Another CVS Clone).
CVS replacement attempts projects include CVSNT,
Subversions, EVS and OpenCVS [1].

E. CVS CRITICISMS

There has been debates from critics of the Concurrent
Version System since the emergence of SVN and
other version control systems. However, admirers of
CVS usually take exceptions to some criticisms
meted out to CVS. SVN is seen to be a replacement
for CVS. Below are some criticisms of CVS:

Branch operations are expensive.

Commits are not atomic.

CVS treats files as text by default.

No support for distributed revision control or

unpublished changes.

e Support for Unicode
filenames is limited.

e No version of symbolic links.

e Revisions created by a commit are per file,
rather than spanning the collection of files
that make up the project or spanning the
entire repository.

e CVS does not version the moving or

renaming of files and directories.

and non-ASCII

October 2013 Vol — | Issue - 3

159

International Journal of ICT and Management

. SUBVERSIONS (SVN)

Subversions as abbreviated as SVN is a software
versioning and revision control system (RCS)
distributed under the Open Source License. SVN are
also used to maintain current and historical events
made by the developers on source codes, web pages,
databases etc. Subversions are arguably seen as a
replacement for the Concurrent Versioning System
(CVS). Some projects that are executed using SVN
are Apache Software Foundation, Free Pascal,
FreeBSD, Mono, GCC and SourceForge. A report by
Forrester Research in 2007 indicates that Subversions
(SVN) is the sole leader in the standalone Software
Configuration Management (SCM) category as well
as a strong performer in the Software Configuration
and Change Management (SCCM) category [8].

In 2000, CollabNet Inc. created Subversions (SVN)
and it's now a top level Apache project being built by
a community of developers. Subversion lead by
example by hosting its own source codes in 2001 to
enable contributors to add value to it as a project as
reported by Collins-Sussman et al [2]. Subversions
were accepted into an Apache Incubator in
November, 2009 and later became a top level Apache
project in February, 2010 [5].

A SUBVERSIONS
TYPES

REPOSITORY

A repository commonly refers to a location for
storing often used for preservation or safety of codes.
SVN has two types of repository storage namely
Berkeley DB and FSFS (File System File System).

a. Berkeley DB

The Berkeley DB package is originally used in
developing SVN. However, some limitations were
realized when a program crashes, the Repository goes
offline even when no data is lost and no corruption of
data occurs. This means that the safest way to use the
Subversions with Berkeley DB is a single server
process used as a single user as indicated by Ben
Collins-Sussman et al [3].

b. FSFS

FSFS was developed as a new storage subsystem in
2004. Ben Collins-Sussman reports that, FSFS works
faster than Berkeley DB on file directories and take
less disk space compared to the Berkeley DB due to
less logging [3]. FSFS became the default data
repository beginning from subversions 1.2.

ISSN No. 2026-6839

5 7
1R v

c. Repository Access

Gaining access to subversion repository can occur in
three ways as indicated below:

e Through a local filesystem or network file

system

e Over http/https using the mod_dav_svn for
apache 2

e over TCP/IP using the custom "svn"

protocol with a default port of 3690

All above three ways can be used to access both the
Berkeley DB and the FSFS repositories in
subversions.

IV. SIMILARITIES BETWEEN
CONCURRENT VERSION
SYSTEM(CVS) AND

SUBVERSIONS (SVN)

Despite the debate surrounding CVS and SVN there
are still some similarities that exist between those
two (2) systems. The Analysis of some identified
similarities are outlined below:

e CVS and SVN both have the ability to work
on only one directory of the repository

e CVS and SVN can both track uncommitted
changes by using "cvs diff" and "svn diff"
respectively.

e Both systems have no way to assign a per-
file commit message to the changeset as well
as per-changeset message. Only CVS
commit messages are per-change. SVN has
no such feature.

e Both systems support web interfaces

e CVS and SVN both have available
Graphical User Interface (GUI)

e CVS and SVN are both open source under
GNU GPL and Apache/BSD-Style licence.

e They both have the ability to track the
history of codes line-by-line using "“cvs
annotate" and "svn blame" commands.

e They both have networking support using
ssh

A COMPARATIVE DIFFERENCES OF
CVS AND SVN

The comparative differences between the two
systems will highlight some key important features as
well as give indication of a better system in the
following categories:

October 2013 Vol — | Issue - 3

160

International Journal of ICT and Management

Repository format

Speed

Tags and branches
Availability

Meta data

File types

Roll back ability

Transactions

Internal Architecture and code
Networking support

Per change commits messages feature

V. REPOSITORY FORMAT

The Repository format is used to automatically create
configuration files for new repositories whose
information is published in unavailable format
repositories, which can be installed using packages.
CVS has a better repository format compared to SVN
within the context below:

CVs This is based on RCS (revision control
system) files of versions control. Each file
connected to CVS is an ordinary file
containing some additional information. It
is quite natural that the tree of these files
repeats the file tree in the local directory. It
is worth noting that, with CVS you can

easily correct RCS files if necessary.

SVN SVN is a relational database (BerkleyDB)
and FSFS. On one hand, this settles many
problems (for example, concurrent access
through the file share) and enables new
functionalities (for example, transactions at
operations performance). However, on the
other hand, data storage now is not
transparent, or at least is not available for
user interference. That is why the utilities
for “curing” and ‘"recovering" of the
repository (database) are provided.

A SPEED

Speed in configuration management is how fast an
activity could be executed to bring out the expected
output. Speed is very essential when developing
software in a community of developers. In the
context of system design, SVN is faster than CVS.
SVN transmits less information through the network
and supports more operations for offline mode.

ISSN No. 2026-6839

5 7
1R v

B. TAGS AND BRANCHES

A tag or branch is nothing other than a copy of a
specific revision of your project folder located in a
known location in the repository. However, a tag is
completely different from a branch. A tag is also
called a label in other version control systems, a tag
uniquely identifies the state of a part or all of the
repository at a particular point in time whiles a
branch is a copy of an existing folder at a given point
in time. A branch is technically identical to a tag. The
two only really differ in terms of intent, i.e. what, by
convention, they are intended for. While a tag is
generally intended as a static snapshot, a branch is
intended to be continued to be modified subsequent
to the branch operation. This allows two versions of a
folder starting from a common point to diverge over
time independently of one another.

Tags and branches are implemented properly in the
Concurrent Version System (CVS) compared to
Subversions (SVN). In SVN, both tag creation and
branch creation are substituted for copying within the
repository. From the SVN developer's viewpoint, this
is very elegant decision, which simplifies one's life.
However, the ability to tag a code is missing in SVN
and has been compensated by using the Universal
Numbering of files. This means that the whole
repository gets the version number, but not each
separate file. It is not very convenient to store a four-
digit number instead of a symbolic tag.

C. AVAILABILITY

CVS is more available compared to SVN in the
context below:

International Journal of ICT and Management

The file type is the standard way a file is encoded in a
computer. It indicates how bits are used to encode
files in a digital storage medium. SVN again has a
better file type against CVS.

CVs CVS was initially intended for text data
storage. That is why storage of other files
(binary, unicode) is not trivial and requires
special information, as well as adjustments
on either server or client sides.

SVN SVN manipulates all the file types and
does not require further instructions.

F. ROLLBACK ABILITY

Rollback is an operation which returns an activity to
some previous state after committing that activity
usually in database and software related issues. CVS
has the ability to rollback a committed activity hence
making it better compared to SVN in this context
since SVN has no such feature.

CVsS CVS can roll back any commit in the
repository, even if this may require some
time (each file should be processed
independently)

SVN SVN does not allow rollback of the
commit. The authors suggest copy good
repository state to the end of a trunk to
overwrite bad commit. However bad
commit itself will remain in the repository.

CVsS Presently CVS is supported everywhere
where you might need it.

SVN SVN not yet so widely used, as the result
there are places where it supports still not
implemented.

D. METADATA

Metadata is simply "data about data" or can also be
defined as data providing information about one or
more aspects of the data. SVN has a better metadata
compared to CVS within the context outlined:

CVS Store only files and nothing else.

SVN SVN stores files as well as attach files.

E. FILE TYPES

October 2013 Vol — | Issue - 3

G. TRANSACTIONS

A transaction comprises a unit of work performed
within a database management system (or similar
system) against a database, and treated in a coherent
and reliable way independent of other transactions. It
is interesting to note that Subversions operate on the
principle "all or nothing" when dealing with data
transfer or transaction. This feature gives it an edge
over CVS.

H. INTERNAL ARCHITECTURE AND
CODE

CVS was written initially as scripts around RCS
executables but later was constituted into a single
executable codes. It has poor internal structure of
codes and historical bug fixes. SVN has a better
internal structure and codes. SVN codes are
expandable and have room for future improvements.

l. NETWORKING SUPPORT

ISSN No. 2026-6839

5 7
1R v

CVS wuses a proprietary protocol with various
variations for its client/server protocol. This protocol
can be tunneled over an SSH connection to support
encryption. The Subversion service can use either
WebDAV+DeltaV (which is HTTP or HTTPS based)
as its underlying protocol, or its own proprietary
protocol that can be channeled over an SSH
connection. The above analysis makes SVN a little
better compared to CVS in dealing with networking
support.

J. COMMIT MESSAGES FEATURE

Commit messages tell us the status of our
transactions. It is important to know the status of
your commit command to enable you keep track our
operations. CVS has a pre commit message feature to
alert developers the status of their operations whiles
SVN has no such feature. This makes CVS a better
candidate when a developer requires commit
messages to keep track of his operations.

V1. CONCLUSION

I have presented an overview of configuration
management and outlined the similarities between
Concurrent Version System (CVS) and Subversions
(SVN). A comparative analysis of some of their
differences was also highlighted and a better
candidate in each category indicated.

This paper provides an understanding of
configuration management comparing CVS and SVN
to broaden the understanding in those two versioning
and control systems. Contrary to the view by many
that SVN is a replacement of CVS, this paper
highlights different categories that see each of the
two systems as a better option compared to the other.
The choice of a versioning and control system solely
lies on the priority of the developer on the features of
each system. Thus, per the analysis above, SVN
cannot be considered a CVS substitute. It is a
different system, similar to CVS. It has unique
functions, which can serve as a reason for its use.
These functions make it more suitable for some
development environments.

VII. REFERENCES
[1] Collins-Sussman, B. "Dispelling Subversion
FUD". Retrieved June 30, 2010.[Online]

Available:(http://www.red-
bean.com/sussman/svn-anti-fud.html)

October 2013 Vol — | Issue - 3

162

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

International Journal of ICT and Management

Collins-Sussman, B., Brian W., Fitzpatrick,
C., Pilato M. (2011) "What is Subversion?
> Subversion's History". Version Control
with Subversion (for Subversion 1.7).
Retrieved 15 March 2012.

Collins-Sussman, B., Brian W., Fitzpatrick,
C., Pilato M. (2011) "Chapter 5: Strategies
for Repository Deployment”. Version
Control with Subversion: For Subversion
1.7. O'Reilly.

IEEE Guide to Software Configuration
Management (1987). New York, NY:
Institute of Electrical and Electronics
Engineers.

Rubinstein, D. (2009) "Subversion joins
forces with Apache”. SD Times. Retrieved
15 March 2012.

Schwaber, C., Barnett, L., Friedlander, D.,
Hogan L. (2005) the Expanding Purview of
Software Configuration ~ Management.
[Online].

Available:http://www.forrester.com/Researc
h/Document/Excerpt/0,7211,36337,00.html.

Software Engineering Institute (2000)
Capability Maturity Model Integration,
Version 1.1 CMMI for Systems Engineering
and Software Engineering (CMMI-SE/SW,

V1.1) (CMU/SEI-2000-TR-018,
ADA388775). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon
University.

The Forrester Wave: Software Change and

Configuration Management, Q2 (2007)
Forrester Research.
Westfechtel, B., Conradi R. (2003)

"Software Architecture and Software
Configuration Management,” Proceedings
of the ICSE Workshops SCM 2001 and
SCM, pp 24-39.

[10] www.download.savannah.gnu.org/releases/c

vs/source/stable/1.11.23 "Index of
[releases/cvs/source/stable/1.11.23".
(Retrieved January 15, 2013).

[11]www.ximbiot.com/CVS/Concurrent

Versions System v1.12.12.1/Overview
(Retrieved 9 December 2011).

ISSN No. 2026-6839

