
 International Journal of ICT and Management  
 

June 2014 Vol – II Issue - 1                                         65   ISSN No. 2026-6839 

 

Added Advanced Encryption Standard (A-Aes): With 
512 Bits Data Block And 512, 768 And 1024 Bits 

Encryption Key 
Mahendra Kumar Shrivas    Satya Vir Singh 
Lecturer – Information Technology    Campus Head 
Sikkim Manipal University, Kumasi, Ghana   Sikkim Manipal University, Kumasi, Ghana 
mahendra@smughana.com       satya@smughana.com  

  

 

ABSTRACT - Recent data security attacks have certainly 
played with the trust of the Computer and Internet users. 
They are panic to know about surveillance programs of 
some governments and security agencies. Secure systems 
are being compromised and encrypted communication 
channels are being intercepted by attacker and security 
agencies. Security systems need to be updated and 
algorithms need to be revised time to time. In November 
26, 2001 National Institute of Standards and Technology 
(NIST) approved Advance Encryption Standard (AES) 
[1], which specifies a (Federal Information Processing 
Standards) FIPS approved cryptographic algorithm that 
can be used to protect electronic data. The AES algorithm 
is capable of using cryptographic keys of 128, 192, and 
256 bits to encrypt and decrypt data in blocks of 128 bits. 
Researchers and attackers have done cryptanalysis and 
successfully recovered the secrete key after attack. 13 
years old standard is still in use which is not be advisable 
to use. Some of the known attacks on AES are Biclique 
Cryptanalysis [2], Related-Key Cryptanalysis [3], and 
Improved Related-Key Impossible Differential Attacks [4], 
Cache-timing attacks on AES.[5], AES power attack[6], 
etc. In this research paper we are proposing Added 
Advance Encryption Standard (A-AES) algorithm which 
is capable of using cryptographic symmetric keys of 512, 
768 and 1024 bits to encrypt and decrypt data in blocks of 
512 bits. 
 
KEYWORDS: AES, Encryption, Decryption, Symmetric 
Key, AES-512, AES-768, AES-1024, A-AES 

 
I. INTRODUCTION 

Encryption is the technique where the “plain text” i.e., the 
data to be secured is converted into “cipher text” which 
cannot be easily identified by unauthorized users. It is 

powerful tool in providing privacy, authenticity, integrity, 
and limited access to data. For the reason that networks 
often involve even greater risks, data is often secured with 
encryption, plausibly in combination with other controls.  
 
The most important type of the encryption type is the 
symmetric key encryption. In the symmetric key encryption 
(Fig.1) both for the encryption and decryption process the 
same key is used. Hence the secrecy of the key is 
maintained and it is kept private.  

 
Fig 1 : Symmetric key cryptography 

Symmetric algorithms have the advantage of not 
consuming too much of computing power and it works with 
high speed in encryption. A block cipher is taken as the 
input, a key and input, and then the output block will be 
same in size in the symmetric key encryption. 

Though DES, Triple DES, AES and Blowfish are 
symmetric key cryptographic algorithm, and they have the 
ability to secure data.  
 
AES is most widely and commonly used symmetric key 
encryption technique which is approved by National 
Institute of Standards and Technology (NIST) and specifies 
a (Federal Information Processing Standards) FIPS 



 International Journal of ICT and Management  
 

June 2014 Vol – II Issue - 1                                         66   ISSN No. 2026-6839 

 

approved cryptographic algorithm that can be used to 
protect electronic data. 
 

A. ALGORITHM SPECIFICATION  

For the AES algorithm, the length of the input block, the 
output block and the State is 128 bits. This is represented 
by Nb = 4, which reflects the number of 32-bit words 
(number of columns) in the State.  

For the AES algorithm, the length of the Cipher Key, K, is 
128, 192, or 256 bits. The key length is represented by Nk 
= 4, 6, or 8, which reflects the number of 32-bit words 
(number of columns) in the Cipher Key.  
 
For the AES algorithm, the number of rounds to be 
performed during the execution of the algorithm is 
dependent on the key size. The number of rounds is 
represented by Nr, where Nr = 10 when Nk = 4, Nr = 12 
when Nk = 6, and Nr = 14 when Nk = 8.  

The only Key-Block-Round combinations that conform 
to this standard are given below :- 
 

 Key Length  
(Nk words) 

Block Size 
 (Nb words) 

Number of 
Rounds (Nr) 

AES-
128  

4 4 10 

AES-
192  

6 4 12 

AES-
256  

8 4 14 

 
Fig 2. Relation between key length, block size and 
number of rounds 

B. ATTACHS ON AES 

13 years old standard is still in use which is not be 
advisable to use. Some of the known attacks on AES are 
Biclique Cryptanalysis[2], Related-Key Cryptanalysis[3], and 
Improved Related-Key Impossible Differential Attacks 
[4],Cache-timing attacks on AES [5], AES power attack [6]. 

For AES-128, the key can be recovered with a 
computational complexity of 2126.1 using the biclique attack 
[2]. For biclique attacks on AES-192 and AES-256, the 
computational complexities of 2189.7 and 2254.4 respectively 
apply. Related-key attacks [3] can break AES-192 and 
AES-256 with complexities 2176 and 299.5, respectively. 

On July 1, 2009, Bruce Schneier blogged[7] about a related-
key attack on the 192-bit and 256-bit versions of AES, 

discovered by Alex Biryukov and Dmitry Khovratovich,[8] 
which exploits AES's somewhat simple key schedule and 
has a complexity of 2119. In December 2009 it was 
improved to 299.5. This is a follow-up to an attack 
discovered earlier in 2009 by Alex Biryukov, Dmitry 
Khovratovich, and Ivica Nikolić, with a complexity of 296 
for one out of every 235 keys [9]. 

In November 2010 Endre Bangerter, David Gullasch and 
Stephan Krenn published a paper which described a 
practical approach to a "near real time" recovery of secret 
keys from AES-128 without the need for either cipher text 
or plaintext. The approach also works on AES-128 
implementations that use compression tables, such as 
OpenSSL [10]. Like some earlier attacks this one requires 
the ability to run unprivileged code on the system 
performing the AES encryption, which may be achieved by 
malware infection far more easily than commandeering the 
root account[11]. 
 

II. PROPOSED ALGORITHM 
SPECIFICATION  

For proposed ADDED ADVANCED ENCRYPTION 
STANDARD (A-AES) algorithm, the length of the input 
block, the output block and the State is 512 bits. This is 
represented by Nb = 8, which reflects the number of 64-bit 
words (number of columns) in the State.  
 
For the A-AES algorithm, the length of the Cipher Key, K, 
is 512, 768, or 1024 bits. The key length is represented by 
Nk = 8, 12, or 16, which reflects the number of 64-bit 
words (number of columns) in the Cipher Key.  
For the A-AES algorithm, the number of rounds to be 
performed during the execution of the algorithm is 
dependent on the key size. The number of rounds is 
represented by Nr, where Nr = 18 when Nk = 8, Nr = 22 
when Nk = 12, and Nr = 26 when Nk = 16.  

The only Key-Block-Round combinations that conform 
to this standard are given below :- 

 Key Length  
(Nk words) 

Block Size 
 (Nb words) 

Number of 
Rounds (Nr) 

A-AES-
512  

8 8 18 

A-AES-
768 

12 8 22 

A-AES-
1024 

16 8 26 

 



 International Journal of ICT and Management  
 

June 2014 Vol – II Issue - 1                                         67   ISSN No. 2026-6839 

 

Fig 3. Relation between key length, block size and 
number of rounds 

 A-AES algorithm uses a round function that is composed 
of four different byte-oriented transformations :- 
 
� Byte substitution using a substitution table (S-box), 

 
� Shifting rows of the State array by different offsets, 

 
� Mixing the data within each column of the State array 

 
� Adding a Round Key to the State. 
 

A. CIPHER 

At the start of the Cipher, the input is copied to the State 
array.  After an initial Round Key addition, the State array 
is transformed by implementing a round function 18, 22, or 
26 times (depending on the key length), with the final 
round differing slightly from the first Nr -1 rounds. The 
final State is then copied to the output. 

The round function is parameterized using a key schedule 
that consists of a one-dimensional array of four-byte words 
derived using the Key Expansion routine described in Sec. 
3.2.  

The Cipher is described in the pseudo code in Fig. 4. The 
individual transformations - SubBytes(), ShiftRows(), 
MixColumns(), and AddRoundKey() – process the State 
and are described in the following subsections. In Fig. 4, 
the array w[] contains the key schedule, which is described 
in Sec. 3.2.  

As shown in Fig. 4, all Nr rounds are identical with the 
exception of the final round, which does not include the 
MixColumns()transformation. 
 
 
 
 
Cipher(byte in[8*Nb], byte out[8*Nb], word 
w[Nb*(Nr+1)])  
begin  
byte  state[8,Nb]  

state = in  
AddRoundKey(state, w[0, Nb-1])  
for round = 1 step 1 to Nr–1 SubBytes(state) 

ShiftRows(state)  
 MixColumns(state) 

 AddRoundKey(state, w[round*Nb, 
(round+1)*Nb-1])  

end for  
SubBytes(state) 
 ShiftRows(state)  

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])  
out = state  

end 
  
Fig 4. Pseudo Code for the Cipher. 

� SubBytes() Transformation: The SubBytes() 

transformation is a non-linear byte substitution that 

operates independently on each byte of the State using 

a substitution table (S-box). This S-box (Fig. 5), which 

is invertible, is constructed by composing two 

transformations:  

� Take the multiplicative inverse in the finite field 
GF(28)  

� Apply the following affine transformation (over 

GF(28) ) (1) 
 

for 0 ≤ i < 8, where bi is the i
th 

bit of the byte, and ci is the 

i
th 

bit of a byte c with the value {63} or {01100011}. Here 
and elsewhere, a prime on a variable (e.g., b`) indicates that 
the variable is to be updated with the value on the right. 
The S-box used in the SubBytes() transformation is 
presented in hexadecimal form in Fig. 5.  
 
For example, if s1,1 ={53}, then the substitution value 
would be determined by the intersection of the row with 
index ‘5’ and the column with index ‘3’ in Fig. 5. This 
would result in s' 1,1 having a value of {ed}. 



 International Journal of ICT and Management  
 

June 2014 Vol – II Issue - 1                                         68   ISSN No. 2026-6839 

 

Fig 5. S-box: substitution values for the byte xy 
 (in hexadecimal format) 

 
� ShiftRows() Transformation: In the ShiftRows() 

transformation, the bytes in the last three rows of the 

State are cyclically shifted over different numbers of 

bytes (offsets). The first row, r = 0, is not shifted. 

Specifically, the ShiftRows() transformation proceeds 

as follows:  

s 
' 

��s r,cr,(c��shift (r, Nb)) mod Nb for 0 < r <8 and 0 ��c < Nb, (2) 
 

where the shift value shift(r,Nb) depends on the row 
number, r, as follows (recall that Nb = 8): 

 
shift(1,8)=1;shift(2,8)=2;shift(3,8)=3;shift(4,8)=4; shift(5,8)=5; 
shift(6,8)=6;shift(7,8)=7 .                                      (3) 
  
 This has the effect of moving bytes to “lower” positions in 
the row (i.e., lower values of c in a given row), while the 
“lowest” bytes wrap around into the “top” of the row (i.e., 
higher values of c in a given row). 

 
� MixColumns() Transformation : The 

MixColumns() transformation operates on the State 
column-by-column, treating each column as a eight-
term polynomial. The columns are considered as 
polynomials over GF(28) and multiplied modulo x 8 + 
1 with a fixed polynomial a(x), given by 

 
 a(x) = {07}x 7 + {06}x 6 +{05}x 5 + {04}x 4+ {03}x 3 + 
{01}x 2 + {01}x + {02}                                                     (4) 
 
� AddRoundKey() Transformation : In the 

AddRoundKey() transformation, a Round Key is 

added to the State by a simple bitwise XOR operation. 
Each Round Key consists of Nb words from the key 
schedule (described in Sec. 3.2). Those Nb words are 
each added into the columns of the State, such that 

[s`0,c,s`1,c,s`2,c,s`3,c,s`4,c,s`5,c,s`6,c,s`7,c]=[s0,c,s1,c,s2,c,s3,c,s4,c,s5,c

,s6,c,s7,c]    +  [Wround*Nb+c]   for 0<=c<Nb                         (5) 

where [wi] are the key schedule and round is a value in the 
range 0 ≤round ≤Nr. In the Cipher, the initial Round Key 
addition occurs when round = 0, prior to the first 
application of the round function (see Fig. 4). The 
application of the AddRoundKey() transformation to the Nr 
rounds of the Cipher occurs when 1 ≤round≤Nr. 

 
B. KEY EXPANSION  

The A-AES algorithm takes the Cipher Key, K, and 
performs a Key Expansion routine to generate a key 
schedule. The Key Expansion generates a total of Nb (Nr + 
1) words: the algorithm requires an initial set of Nb words, 
and each of the Nr rounds requires Nb words of key data. 
The resulting key schedule consists of a linear array of 8-
byte words, denoted [wi ], with i in the range 0 ≤i < Nb(Nr 
+ 1).  

The expansion of the input key into the key schedule 
proceeds according to the pseudo code in Fig. 6. 
 
SubWord() is a function that takes a eight-byte input word 
and applies the S-box (Fig. 5) to each of the eight bytes to 
produce an output word.  
 
The function RotWord() takes a word 
[a0,a1,a2,a3,a4,a5,a6,a7] as input, performs a cyclic 
permutation, and returns the word 
[a1,a2,a3,a4,a5,a6,a7,a0]. The round constant word array, 
Rcon[i], contains the values given by [xi-
1,{00},{00},{00}], with x i-1 being powers of x (x is 
denoted as {02}) in the field GF(28), It is important to note 
that the Key Expansion routine for 1024-bit Cipher Keys 
(Nk = 16) is slightly different than for 512- and 768-bit 
Cipher Keys. If Nk = 16 and i-8 is a multiple of Nk, then 
SubWord()is applied to w[i-1]prior to the XOR. 
 
 
 
 
 
 
 



 International Journal of ICT and Management  
 

June 2014 Vol – II Issue - 1                                         69   ISSN No. 2026-6839 

 

 
KeyExpansion(byte key[8*Nk], word w[Nb*(Nr+1)], 
Nk)  
begin  
word temp  
i = 0  
while (i < Nk)  
 w[i] = word(key[8*i], key[8*i+1], 
 key[8*i+2], key[8*i+3] ], key[8*i+4] ], 
 key[8*i+5] ], key[8*i+6] ], key[8*i+7])  
 i = i+1  
end while  
i = Nk  
while (i < Nb * (Nr+1)) 
  temp = w[i-1]  
 if (i mod Nk = 0)  
  temp = SubWord(RotWord(temp))  
  xor Rcon[i/Nk]  
 else if (Nk > 12 and i mod Nk = 8)  
  temp = SubWord(temp) 
 end if  
 w[i] = w[i-Nk] xor temp  
 i = i + 1  
    end while  
end 
Fig. 6. Pseudo Code for Key Expansion. 
 

C. INVERSE CIPHER  

The Cipher transformations in Sec. 3.1 can be inverted and 
then implemented in reverse order to produce a 
straightforward Inverse Cipher for the A-AES algorithm. 
The individual transformations used in the Inverse Cipher -
InvShiftRows(), InvSubBytes(),InvMixColumns(), and 
AddRoundKey() – process the State and are described in 
the following subsections. The Inverse Cipher is described 
in the pseudo code in Fig. 7. In Fig. 7, the array w[] 
contains the key schedule, which was described previously 
in Sec. 3.2. 

 
InvCipher(byte in[8*Nb], byte out[8*Nb], word 
w[Nb*(Nr+1)])  
begin  
byte state[8,Nb]  

state = in  
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-
1])  

for round = Nr-1 step -1 downto 1  
 InvShiftRows(state) 
 InvSubBytes(state) 

AddRoundKey(state, w[round*Nb, 
(round+1)*Nb-1])  

 InvMixColumns(state)  
end for  
InvShiftRows(state)  
InvSubBytes(state)  
AddRoundKey(state, w[0, Nb-1])  

out = state  
end 
 
Fig. 7 Pseudo Code for the Inverse Cipher 
 
� InvShiftRows() Transformation: InvShiftRows() 

is the inverse of the ShiftRows() transformation. The 
bytes in the last serven rows of the State are cyclically 
shifted over different numbers of bytes (offsets). The 
first row, r = 0, is not shifted. The bottom three rows 
are cyclically shifted by Nb -shift(r, Nb) bytes, where 
the shift value shift(r,Nb) depends on the row number, 
and is given in equation (3) (see Sec. 3.1.2).  

Specifically, the InvShiftRows() transformation proceeds as 
follows: 

s r,(c��shift (r, Nb)) mod Nb 
' 
��s r,c for 0 < r <4 and 0 ��c 

< Nb          (6) 
 
� InvSubBytes() Transformation : InvSubBytes() 

is the inverse of the byte substitution transformation, 
in which the inverse S-box is applied to each byte of 
the State. This is obtained by applying the inverse of 
the affine transformation (3.1) followed by taking the 
multiplicative inverse in GF(28).  

The inverse S-box used in the InvSubBytes() 
transformation is presented in Fig. 8:  

 
Fig. 8  Inverse S-box: substitution values for the byte xy (in 
hexadecimal format). 



 International Journal of ICT and Management  
 

June 2014 Vol – II Issue - 1                                         70   ISSN No. 2026-6839 

 

� InvMixColumns() Transformation: 
InvMixColumns() is the inverse of the MixColumns() 
transformation. InvMixColumns() operates on the 
State column-by-column, treating each column as a 
eight-term polynomial. The columns are considered as 
polynomials over GF(28) and multiplied modulo x8  + 
1 with a fixed polynomial. 

� Inverse of the AddRoundKey() 
Transformation: AddRoundKey(), which was 
described in Sec. 3.1.4, is its own inverse, since it only 
involves an application of the XOR operation. 

� Equivalent Inverse Cipher: In the straightforward 
Inverse Cipher presented in Sec. 3.3 and Fig.7, the 
sequence of the transformations differs from that of 
the Cipher, while the form of the key schedules for 
encryption and decryption remains the same. 
However, several properties of the AES algorithm 
allow for an Equivalent Inverse Cipher that has the 
same sequence of transformations as the Cipher (with 
the transformations replaced by their inverses). This is 
accomplished with a change in the key schedule.  

The two properties that allow for this Equivalent Inverse 
Cipher are as follows:  

 
� The SubBytes() and ShiftRows() transformations 

commute; that is, a SubBytes() transformation 
immediately followed by a ShiftRows() 
transformation is equivalent to a ShiftRows() 
transformation immediately followed by a SubBytes() 
transformation. The same is true for their inverses, 
InvSubBytes() and InvShiftRows.  

 
� The column mixing operation - MixColumns() and 

InvMixColumns() - are linear with respect to the 
column input, which means InvMixColumns(state 
XOR Round Key) = InvMixColumns(state) XOR 
InvMixColumns(Round Key). 

 
These properties allow the order of InvSubBytes() and 
InvShiftRows() transformations to be reversed. The order 
of the AddRoundKey() and InvMixColumns() 
transformations can also be reversed, provided that the 
columns (words) of the decryption key schedule are 
modified using the InvMixColumns()transformation.  
 
The equivalent inverse cipher is defined by reversing the 
order of the InvSubBytes() and InvShiftRows() 
transformations shown in Fig. 7, and by reversing the order 

of the AddRoundKey() and InvMixColumns() 
transformations used in the “round loop” after first 
modifying the decryption key schedule for round = 1 to Nr-
1 using the InvMixColumns() transformation. The first and 
last Nb words of the decryption key schedule shall not be 
modified in this manner. Given these changes, the resulting 
Equivalent Inverse Cipher offers a more efficient structure 
than the Inverse Cipher described in Sec. 3.3 and Fig. 7. 
Pseudo code for the Equivalent Inverse Cipher appears in 
Fig. 9. (The word array dw[] contains the modified 
decryption key schedule. The modification to the Key 
Expansion routine is also provided in Fig. 9.) 

  
EqInvCipher(byte in[8*Nb], byte out[8*Nb], word 
dw[Nb*(Nr+1)])  
begin  
byte state[8,Nb]  
state = in  
AddRoundKey(state, dw[Nr*Nb, (Nr+1)*Nb-1])  
for round = Nr-1 step -1 downto 1  
 InvSubBytes(state)  
 InvShiftRows(state)  
 InvMixColumns(state)  
AddRoundKey(state, dw[round*Nb, (round+1)*Nb-
1])  
end for  
InvSubBytes(state)  
InvShiftRows(state)  
AddRoundKey(state, dw[0, Nb-1])  
out = state  
end  
For the Equivalent Inverse Cipher, the following 
pseudo code is added at the end of the Key Expansion 
routine (Sec. 3.2):  
for i = 0 step 1 to (Nr+1)*Nb-1  
 dw[i] = w[i]  
end for  
for round = 1 step 1 to Nr-1  
 InvMixColumns(dw[round*Nb, 
(round+1)*Nb-1]) // note change of type  
end for 

Fig. 9 Pseudo Code for the Equivalent Inverse Cipher 

III.  CONCLUSION 

AES is being used in various Archive and compression 
tools(7z, RAR, WinZip, UltraISO), Encrypting File System 



 International Journal of ICT and Management  
 

June 2014 Vol – II Issue - 1                                         71   ISSN No. 2026-6839 

 

in Windows, Disk encryption tools (DiskCryptor, 
BitLocker, TrueCrypt, Private Disk),Security for 
communications in Local Area Networks(IEEE 802.11i, 
IEEE 802.11), IPsec, OpenSSL, CyaSSL, Intel and AMD 
processors include the AES instruction set. On IBM zSeries 
mainframes, AES is implemented as the KM series of 
assembler opcodes when various Message Security Assist 
facilities are installed. 

As mentioned AES is not 100% secure and there is a need 
of more secure standard. This proposal may fulfill the need 
as A-AES uses 512 bit data block with 512 bit, 768 bit or 
1024 bit key for encryption and decryption and can be 
easily implemented using any programming language for 
any platform. 

IV.  FUTURE WORKS  

A-AES need to be implemented by programmers and need 
to be tested against well known attacks.  

V. ACKNOWLEDGMENTS 

Proposed algorithm is enhancement of standard AES. 
Authors do not hold any rights on original standards 
version of AES. Software mentioned in this work are just 
for reference purpose and intellectual properties of 
respected organization(s). 

VI.  REFERENCES 

[1] US National Institute of Standards and 
Technology Advanced Encryption Standard, 
Federal Information Processing Standards 
Publications No. 197, 2001. 

 
[2] Andrey Bogdanov, Dmitry Khovratovich 

and Christian Rechberge Biclique 
Cryptanalysis of the Full AES 16 Aug 2011 

 
[3] Alex Biryukov and Dmitry Khovratovich, 

Related-Key Cryptanalysis of the Full AES-
192 and AES-256, Advances in 
Cryptography, proceedings of 
ASIACRYPT2009, Lecture Notes in 
Computer Science 5912, pp. 1–18, Springer, 
2009. 

 
[4] Key Impossible Differential Attacks on 

Reduced-Round AES-192, Proceedings of 

Selected Areas in Cryptography 2006, 
Lecture Notes in Computer Science 
4356,pp. 15–27, Springer, 2007. 

 
[5] Daniel J. Bernstein. Cache-timing attacks on 

AES.April2005.http://cr.yp.to/antiforgery/ca
chetiming-20050414.pdf 

 
[6] Guido Bertoni, Luca Breveglieri, Matteo 

Monchiero, Gianluca Palermo, and Vittorio 
Zaccaria, AES power attack based on 
induced cache miss and countermeasure. 
ITCC (1), 2005. 

 
[7] Bruce Schneier (2009-07-01). "New Attack 

on AES". Schneier on Security, A blog 
covering security and security technology. 
Archived from the original on 8 February 
2010. Retrieved 2010-03-11. 

 
[8] Biryukov, Alex; Khovratovich, Dmitry 

(2009-12-04). "Related-key Cryptanalysis of 
the Full AES-192 and AES-256". Retrieved 
2010-03-11. 

 
[9] Nikolić, Ivica (2009). "Distinguisher and 

Related-Key Attack on the Full AES-256". 
Advances in Cryptology – CRYPTO 2009. 
Springer Berlin / Heidelberg. pp. 231–249. 
doi:10.1007/978-3-642-03356-8_14. 
ISBN 978-3-642-03355-1. 

 
[10] Endre Bangerter, David Gullasch and 

Stephan Krenn (2010). "Cache Games – 
Bringing Access-Based Cache Attacks on 
AES to Practice". 

 
[11] "Breaking AES-128 in realtime, no 

ciphertext required | Hacker News". 
News.ycombinator.com. Retrieved 2012-12-
23. 
 

 
 
 
 


