JJJC/'J!A

International Journal of ICT and Management

Added Advanced Encryption Standard (A-Aes): With
512 Bits Data Block And 512, 768 And 1024 Bits
Encryption Key

Mahendra Kumar Shrivas

Lecturer — Information Technology

Sikkim Manipal University, Kumasi, Ghana
mahendra@smughana.com

Satya Vir Singh
Campus Head
Sikkim Manipal University, Kumasi, Ghana

satya@smughana.com

ABSTRACT - Recent data security attacks have certainly
played with the trust of the Computer and Internet users.
They are panic to know about surveillance programs of
some governments and security agencies. Secure systems
are being compromised and encrypted communication
channels are being intercepted by attacker and security
agencies. Security systems need to be updated and
algorithms need to be revised time to time. In November
26, 2001 National Institute of Standards and Technology
(NIST) approved Advance Encryption Standard (AES)
[1], which specifies a (Federal Information Processing
Standards) FIPS approved cryptographic algorithm that
can be used to protect electronic data. The AES algorithm
is capable of using cryptographic keys of 128, 192, and
256 bits to encrypt and decrypt data in blocks of 128 bits.
Researchers and attackers have done cryptanalysis and
successfully recovered the secrete key after attack. 13
years old standard is still in use which is not be advisable
to use. Some of the known attacks on AES are Biclique
Cryptanalysis [2], Related-Key Cryptanalysis [3], and
Improved Related-Key Impossible Differential Attacks [4],
Cache-timing attacks on AES.[5], AES power attack/[6],
etc. In this research paper we are proposing Added
Advance Encryption Standard (A-AES) algorithm which
is capable of using cryptographic symmetric keys of 512,
768 and 1024 bits to encrypt and decrypt data in blocks of
512 bits.

KEYWORDS: AES, Encryption, Decryption, Symmetric
Key, AES-512, AES-768, AES-1024, A-AES

I. INTRODUCTION

Encryption is the technique where the “plain text” i.e., the
data to be secured is converted into “cipher text” which
cannot be easily identified by unauthorized users. It is

June 2014 Vol —1II Issue - 1 65

powerful tool in providing privacy, authenticity, integrity,
and limited access to data. For the reason that networks
often involve even greater risks, data is often secured with
encryption, plausibly in combination with other controls.

The most important type of the encryption type is the
symmetric key encryption. In the symmetric key encryption
(Fig.1) both for the encryption and decryption process the
same key is used. Hence the secrecy of the key is
maintained and it is kept private.

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient
=

T _ R w
iphert 7 | st
B [;i_)j —e| =
2 | ——
Plaintext Encryption Decryption P|.ainlext
input algorithm algorithm input

Fig 1 : Symmetric key cryptography

Symmetric algorithms have the advantage of not
consuming too much of computing power and it works with
high speed in encryption. A block cipher is taken as the
input, a key and input, and then the output block will be
same in size in the symmetric key encryption.

Though DES, Triple DES, AES and Blowfish are
symmetric key cryptographic algorithm, and they have the
ability to secure data.

AES is most widely and commonly used symmetric key
encryption technique which is approved by National
Institute of Standards and Technology (NIST) and specifies
a (Federal Information Processing Standards) FIPS

ISSN No. 2026-6839

Jjjéj'fuj

approved cryptographic algorithm that can be used to
protect electronic data.

A. ALGORITHM SPECIFICATION

For the AES algorithm, the length of the input block, the
output block and the State is 128 bits. This is represented
by Nb = 4, which reflects the number of 32-bit words
(number of columns) in the State.

For the AES algorithm, the length of the Cipher Key, K, is
128, 192, or 256 bits. The key length is represented by Nk
=4, 6, or 8, which reflects the number of 32-bit words
(number of columns) in the Cipher Key.

For the AES algorithm, the number of rounds to be
performed during the execution of the algorithm is
dependent on the key size. The number of rounds is
represented by Nr, where Nr = 10 when Nk = 4, Nr = 12
when Nk = 6, and Nr = 14 when Nk = 8.

The only Key-Block-Round combinations that conform
to this standard are given below :-

Key Length Block Size Number of
(Nk words) (Nb words) | Rounds (Nr)
AES- 4 4 10
128
AES- 6 4 12
192
AES- 8 4 14
256

Fig 2. Relation between key length, block size and
number of rounds

B. ATTACHS ON AES

13 years old standard is still in use which is not be
advisable to use. Some of the known attacks on AES are
Biclique Cryptanalysis'®), Related-Key Cryptanalysis®), and
Improved Related-Key Impossible Differential Attacks
1 Cache-timing attacks on AES !, AES power attack [¢].

For AES-128, the key can be recovered with a
computational complexity of 2'**! using the biclique attack
[2]. For biclique attacks on AES-192 and AES-256, the
computational complexities of 2'*7 and 2%*** respectively
apply. Related-key attacks [3] can break AES-192 and
AES-256 with complexities 2! and 2°%°, respectively.

On July 1, 2009, Bruce Schneier blogged!” about a related-
key attack on the 192-bit and 256-bit versions of AES,

June 2014 Vol —1II Issue - 1 66

International Journal of ICT and Management

discovered by Alex Biryukov and Dmitry Khovratovich,®!
which exploits AES's somewhat simple key schedule and
has a complexity of 2'". In December 2009 it was
improved to 2°°. This is a follow-up to an attack
discovered earlier in 2009 by Alex Biryukov, Dmitry
Khovratovich, and Ivica Nikoli¢, with a complexity of 2%
for one out of every 2*° keys [9].

In November 2010 Endre Bangerter, David Gullasch and
Stephan Krenn published a paper which described a
practical approach to a "near real time" recovery of secret
keys from AES-128 without the need for either cipher text
or plaintext. The approach also works on AES-128
implementations that use compression tables, such as
OpenSSL [10]. Like some earlier attacks this one requires
the ability to run unprivileged code on the system
performing the AES encryption, which may be achieved by
malware infection far more easily than commandeering the
root account[11].

II. PROPOSED ALGORITHM
SPECIFICATION

For proposed ADDED ADVANCED ENCRYPTION
STANDARD (A-AES) algorithm, the length of the input
block, the output block and the State is 512 bits. This is
represented by Nb = 8, which reflects the number of 64-bit
words (number of columns) in the State.

For the A-AES algorithm, the length of the Cipher Key, K,
is 512, 768, or 1024 bits. The key length is represented by
Nk = 8, 12, or 16, which reflects the number of 64-bit
words (number of columns) in the Cipher Key.

For the A-AES algorithm, the number of rounds to be
performed during the execution of the algorithm is
dependent on the key size. The number of rounds is
represented by Nr, where Nr = 18 when Nk = 8, Nr = 22
when Nk = 12, and Nr = 26 when Nk = 16.

The only Key-Block-Round combinations that conform
to this standard are given below :-

Key Length | Block Size | Number of
(Nk words) | (Nb words) | Rounds (Nr)
A-AES- 8 8 18
512
A-AES- 12 8 22
768
A-AES- 16 8 26
1024

ISSN No. 2026-6839

3 7
Pl v

Fig 3. Relation between key length, block size and
number of rounds

A-AES algorithm uses a round function that is composed
of four different byte-oriented transformations :-

e Byte substitution using a substitution table (S-box),

e Shifting rows of the State array by different offsets,

e Mixing the data within each column of the State array
e Adding a Round Key to the State.

A. CIPHER

At the start of the Cipher, the input is copied to the State
array. After an initial Round Key addition, the State array
is transformed by implementing a round function 18, 22, or
26 times (depending on the key length), with the final
round differing slightly from the first Nr -1 rounds. The
final State is then copied to the output.

The round function is parameterized using a key schedule
that consists of a one-dimensional array of four-byte words
derived using the Key Expansion routine described in Sec.
3.2

The Cipher is described in the pseudo code in Fig. 4. The
individual transformations - SubBytes(), ShiftRows(),
MixColumns(), and AddRoundKey() — process the State
and are described in the following subsections. In Fig. 4,
the array w[] contains the key schedule, which is described
in Sec. 3.2.

As shown in Fig. 4, all Nr rounds are identical with the
exception of the final round, which does not include the
MixColumns()transformation.

International Journal of ICT and Management

AddRoundKey(state,
(round+1)*Nb-1])
end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w/Nr*Nb, (Nr+1)*Nb-1])
out = state

w[round*Nb,

end

Cipher(byte in[8*Nb], byte out[§*Nb], word

w[Nb*(Nr+1)])

begin

byte state[8,Nb]
state = in

AddRoundKey(state, w[0, Nb-1])

for round = 1 step 1 to Nr—1 SubBytes(state)
ShiftRows(state)
MixColumns(state)

June 2014 Vol —1II Issue - 1 67

Fig 4. Pseudo Code for the Cipher.

e SubBytes() Transformation: The SubBytes()
transformation is a non-linear byte substitution that
operates independently on each byte of the State using
a substitution table (S-box). This S-box (Fig. 5), which
is invertible, is constructed by composing two

transformations:

e Take the multiplicative inverse in the finite field
GF(2%)

e Apply the following affine transformation (over

K=t ep

(i+4) mod3

Db

(145 mods

Db

(14+6) mod3

®b Be

(1+7) mod8 i
GF(2%)) (1)

th

for 0 <i <8, where bi is the i bit of the byte, and ci is the
th

i bit of a byte ¢ with the value {63} or {01100011}. Here
and elsewhere, a prime on a variable (e.g., ") indicates that
the variable is to be updated with the value on the right.
The S-box used in the SubBytes() transformation is
presented in hexadecimal form in Fig. 5.

For example, if s;; ={53}, then the substitution value
would be determined by the intersection of the row with
index ‘5’ and the column with index ‘3 in Fig. 5. This
would result in s’ ; ; having a value of {ed}.

ISSN No. 2026-6839

L=
N

0| 1| 2| 3| 4/ 5| 6| 7 8/ 9 a| b| c| d| e| f
63| 7c| 77| 7b|f2|6b|6f| c5| 30|01 67| 2b| fe|d7|ab| 76
ca |82 cS|7d| fa| 58|47 |£0 ad| dd| a2|af| 9c|ad|72|chd
b7 |fd| 93| 26|36 | 3f | f7 cc 34 a5 e5 | f1|71|d8 31|15
04|c7|23|c3|18 | 96 (05| % 07 12 80|e2| eb| 27| b2|75
0983 2c|la|[1b|6e|5a a0 | 52|3b | d6| b3 29| e3|2f| 84
53|dl|00|ed| 20 fc|bl|5b 6a cb be|39| 4a|dc) 58|cf
d0 |ef | aa|fb| 43 |4d |33 |85 45|f9| 02| 7| 50 | 3c| 9f | a8
a3 | 40 | 8f| 92 9d | 38| £5 bc b6 | da| 21| 10| ff| £3 | d2
cd|0c| 13| ec| 5|97 |44 |17 cd|a?7 | Te|3d| 64|5d|19|73
60 |81 4f | dc| 22| 22|90 |88 46|ee b8 | 14 | de| 5e| Ob|db
€0 |32 3a|0a|49|06|24|5c| c2|d3 | ac| 62| 91|95|ed|T79
e7|c8 | 37|6d|8d| d5|de| a9 6c| 56| f4|ea| 65| 7a| ae| 08
ba| 78| 25| 2| 1c| ab|b4| c6 ed |dd| 74| 1f| 4b|bd| 6b| Ba
70| 3e | b5| 66|48 | 03| £6| 0e | 61|35 57| b9 | 86| cl| 1d| 9e
el | f8) 98| 11|69 |d9|8e| 94 9% |1e| 87| el | ce| 55|28 |df
8c|al 89| 0d|bf|e6| 42|68 41|99 2d| 0f | b0 | 54| bb| 1§

Hmio|loo|lo|e|wle|lwa|onle|lwokle
o
=

Fig 5. S-box: substitution values for the byte xy
(in hexadecimal format)

e ShiftRows() Transformation: In the ShiftRows()
transformation, the bytes in the last three rows of the
State are cyclically shifted over different numbers of
bytes (offsets). The first row, » = 0, is not shifted.
Specifically, the ShiftRows() transformation proceeds

as follows:

s = s r,cr,(c+ shifi (r, Nb)) mod Nb for 0 < » <8 and 0 < ¢ < Nb, (2)

where the shift value shifi(r,Nb) depends on the row
number, 7, as follows (recall that Nb = §):

shift(1,8)=1;shift(2,8)=2;shift(3,8)=3;shift(4,8)=4; shift(5,8)=5;
shift(6,8)=6;shift(7,8)=T . (3)

This has the effect of moving bytes to “lower” positions in

the row (i.e., lower values of ¢ in a given row), while the
“lowest” bytes wrap around into the “top” of the row (i.e.,
higher values of ¢ in a given row).

e MixColumns() Transformation : The
MixColumns() transformation operates on the State
column-by-column, treating each column as a eight-
term polynomial. The columns are considered as
polynomials over GF(2®%) and multiplied modulo x ® +
1 with a fixed polynomial a(x), given by

ax) = {07)x 7+ {06)x * +{05)x’ + {04)x '+ {03)x7 +
{013x % + {01)x + {02} 4)

¢ AddRoundKey() Transformation : In the
AddRoundKey() transformation, a Round Key is

June 2014 Vol —1II Issue - 1 68

International Journal of ICT and Management

added to the State by a simple bitwise XOR operation.
Each Round Key consists of Nb words from the key
schedule (described in Sec. 3.2). Those Vb words are
each added into the columns of the State, such that

N N N N N N N N . 2,c
[S 0,C9S l‘cas 2,cas 3,0,3 4,cas 5,c5S 6,cas 7‘0]7[50,05],95 aSS,cas4,c5S5,c
756,C$S7,C] @ [Wmund*Nb+c] for O<:C<Nb (5)

where [wi] are the key schedule and round is a value in the
range 0 <round <Nr. In the Cipher, the initial Round Key
addition occurs when round = 0, prior to the first
application of the round function (see Fig. 4). The
application of the AddRoundKey() transformation to the Nr
rounds of the Cipher occurs when 1 <round<Nr.

B. KEY EXPANSION

The A-AES algorithm takes the Cipher Key, K, and
performs a Key Expansion routine to generate a key
schedule. The Key Expansion generates a total of Nb (Nr +
1) words: the algorithm requires an initial set of Vb words,
and each of the NVr rounds requires Vb words of key data.
The resulting key schedule consists of a linear array of 8-
byte words, denoted [wi], with 7 in the range 0 <i < Nb(Nr
+1).

The expansion of the input key into the key schedule
proceeds according to the pseudo code in Fig. 6.

SubWord() is a function that takes a eight-byte input word
and applies the S-box (Fig. 5) to each of the eight bytes to
produce an output word.

The function RotWord() takes a word
[a0,al,a2,a3,a4,a5,a6,a7] as input, performs a cyclic
permutation, and returns the word
[al,a2,a3,a4,a5,a6,a7,a0]. The round constant word array,
Rcon[i], contains the values given by [xi-
1,{00},{00},{00}], with x i-1 being powers of x (X is
denoted as {02}) in the field GF(28), It is important to note
that the Key Expansion routine for 1024-bit Cipher Keys
(Nk = 16) is slightly different than for 512- and 768-bit
Cipher Keys. If Nk = 16 and i-8 is a multiple of Nk, then
SubWord()is applied to w[i-1]prior to the XOR.

ISSN No. 2026-6839

7
JH (> TM

International Journal of ICT and Management

KeyExpansion(byte key[8*Nk], word w[Nb*(Nr+1)],

Nk)

begin

word temp

i=0

while (i < Nk)
wli] = word(key[8%i], key[8*i+1],
key[8%*i+2], key[8*i+3]], key[8*i+4]],
key[8*i+5]], key[8*i+6]], key[8*i+7])

i=i+l
end while
i =Nk
while (i < Nb * (Nr+1))
temp = wfi-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp))
xor Recon[i/Nk]
else if (Nk > 12 and i mod Nk = 8)
temp = SubWord(temp)
end if
w[i] = w[i-Nk] xor temp
i=i+1
end while
end

for round = Nr-1 step -1 downto 1
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[round*Nb,
(round+1)*Nb-1])
InvMixColumns(state)
end for
InvShiftRows (state)
InvSubBytes(state)
AddRoundKey(state, w[0, Nb-1])
out = state
end

Fig. 6. Pseudo Code for Key Expansion.

C. INVERSE CIPHER

The Cipher transformations in Sec. 3.1 can be inverted and
then implemented in reverse order to produce a
straightforward Inverse Cipher for the A-AES algorithm.
The individual transformations used in the Inverse Cipher -
InvShiftRows(), InvSubBytes(),InvMixColumns(), and
AddRoundKey() — process the State and are described in
the following subsections. The Inverse Cipher is described
in the pseudo code in Fig. 7. In Fig. 7, the array w[]
contains the key schedule, which was described previously
in Sec. 3.2.

InvCipher(byte in[8*Nb], byte out[8*Nb], word
W[Nb*(Nr+1)])

begin
byte state[8,Nb]
state = in
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-
1])
June 2014 Vol — I Issue - 1 69

Fig. 7 Pseudo Code for the Inverse Cipher

e InvShiftRows() Transformation: InvShiftRows()
is the inverse of the ShiftRows() transformation. The
bytes in the last serven rows of the State are cyclically
shifted over different numbers of bytes (offsets). The
first row, » = 0, is not shifted. The bottom three rows
are cyclically shifted by Nb -shifi(r, Nb) bytes, where
the shift value shifi(r,Nb) depends on the row number,
and is given in equation (3) (see Sec. 3.1.2).

Specifically, the InvShiftRows() transformation proceeds as
follows:

s r,(c+ shift (r, Nb)) mod Nb =sr,cfor0<r<4and0<c
<Nb (6)

e InvSubBytes() Transformation : InvSubBytes()
is the inverse of the byte substitution transformation,
in which the inverse S-box is applied to each byte of
the State. This is obtained by applying the inverse of
the affine transformation (3.1) followed by taking the
multiplicative inverse in GF(2).

The inverse S-box wused in the InvSubBytes()
transformation is presented in Fig. 8:

o lala|e|e|o|a|wlo|o|s|w nk e
2
s
ra
a
"
o
@
&
a
&
w
F
o
F
]
]
a
A
o
[
o
2
<
@
o
=
"
w
@
o
=
=

Fig. 8 Inverse S-box: substitution values for the byte xy (in
hexadecimal format).

ISSN No. 2026-6839

Jjjéj'fuj

e InvMixColumns() Transformation:
InvMixColumns() is the inverse of the MixColumns()
transformation. InvMixColumns() operates on the
State column-by-column, treating each column as a
eight-term polynomial. The columns are considered as
polynomials over GF(2®%) and multiplied modulo x® +
1 with a fixed polynomial.

e Inverse of the AddRoundKey()

Transformation: AddRoundKey(), which was

described in Sec. 3.1.4, is its own inverse, since it only

involves an application of the XOR operation.

e Equivalent Inverse Cipher: In the straightforward
Inverse Cipher presented in Sec. 3.3 and Fig.7, the
sequence of the transformations differs from that of
the Cipher, while the form of the key schedules for
encryption and decryption remains the same.
However, several properties of the AES algorithm
allow for an Equivalent Inverse Cipher that has the
same sequence of transformations as the Cipher (with
the transformations replaced by their inverses). This is
accomplished with a change in the key schedule.

The two properties that allow for this Equivalent Inverse
Cipher are as follows:

e The SubBytes() and ShiftRows() transformations
commute; that is, a SubBytes() transformation
immediately ~ followed by a ShiftRows()
transformation is equivalent to a ShiftRows()
transformation immediately followed by a SubBytes()
transformation. The same is true for their inverses,
InvSubBytes() and InvShiftRows.

e The column mixing operation - MixColumns() and
InvMixColumns() - are linear with respect to the
column input, which means InvMixColumns(state
XOR Round Key) = InvMixColumns(state) XOR
InvMixColumns(Round Key).

These properties allow the order of InvSubBytes() and
InvShiftRows() transformations to be reversed. The order
of the AddRoundKey() and InvMixColumns()
transformations can also be reversed, provided that the
columns (words) of the decryption key schedule are
modified using the InvMixColumns()transformation.

The equivalent inverse cipher is defined by reversing the

order of the InvSubBytes() and InvShiftRows()
transformations shown in Fig. 7, and by reversing the order

June 2014 Vol —1II Issue - 1 70

International Journal of ICT and Management

of the AddRoundKey() and
transformations used in the “round loop” after first
modifying the decryption key schedule for round = 1 to Nr-
1 using the InvMixColumns() transformation. The first and
last Nb words of the decryption key schedule shall not be
modified in this manner. Given these changes, the resulting

InvMixColumns()

Equivalent Inverse Cipher offers a more efficient structure
than the Inverse Cipher described in Sec. 3.3 and Fig. 7.
Pseudo code for the Equivalent Inverse Cipher appears in
Fig. 9. (The word array dw][] contains the modified
decryption key schedule. The modification to the Key
Expansion routine is also provided in Fig. 9.)

EqInvCipher(byte in[8*Nb], byte out[8*Nb], word
dw[Nb*(Nr+1)])
begin
byte state[8,Nb]
State = in
AddRoundKey(state, dw[Nr*Nb, (Nr+1)*Nb-1])
for round = Nr-1 step -1 downto 1
InvSubBytes(state)
InvShiftRows (state)
InvMixColumns(state)
AddRoundKey(state, dw[round*Nb, (round+1)*Nb-
1])
end for
InvSubBytes(state)
InvShiftRows(state)
AddRoundKey(state, dw[0, Nb-1])
out = state
end
For the Equivalent Inverse Cipher, the following
pseudo code is added at the end of the Key Expansion
routine (Sec. 3.2):
fori=0step I to (Nr+1)*Nb-1
awli] = w(i]
end for
for round = 1 step 1 to Nr-1
InvMixColumns(dw/[round*Nb,
(round+1)*Nb-1]) // note change of type
end for

Fig. 9 Pseudo Code for the Equivalent Inverse Cipher

I1I. CONCLUSION

AES is being used in various Archive and compression
tools(7z, RAR, WinZip, UltralSO), Encrypting File System

ISSN No. 2026-6839

Jjjéj'fuj

in Windows, Disk encryption tools (DiskCryptor,
BitLocker, TrueCrypt, Private Disk),Security for
communications in Local Area Networks(IEEE 802.111,
IEEE 802.11), IPsec, OpenSSL, CyaSSL, Intel and AMD
processors include the AES instruction set. On IBM zSeries
mainframes, AES is implemented as the KM series of
assembler opcodes when various Message Security Assist
facilities are installed.

As mentioned AES is not 100% secure and there is a need
of more secure standard. This proposal may fulfill the need
as A-AES uses 512 bit data block with 512 bit, 768 bit or
1024 bit key for encryption and decryption and can be
easily implemented using any programming language for
any platform.

IV. FUTURE WORKS

A-AES need to be implemented by programmers and need
to be tested against well known attacks.

V. ACKNOWLEDGMENTS

Proposed algorithm is enhancement of standard AES.
Authors do not hold any rights on original standards
version of AES. Software mentioned in this work are just
for reference purpose and intellectual properties of
respected organization(s).

V1. REFERENCES

[1] US National Institute of Standards and
Technology Advanced Encryption Standard,
Federal Information Processing Standards
Publications No. 197, 2001.

[2] Andrey Bogdanov, Dmitry Khovratovich
and Christian Rechberge Biclique
Cryptanalysis of the Full AES 16 Aug 2011

[3] Alex Biryukov and Dmitry Khovratovich,
Related-Key Cryptanalysis of the Full AES-
192 and AES-256,
Cryptography, proceedings of
ASIACRYPT2009, Lecture Notes in
Computer Science 5912, pp. 1-18, Springer,
20009.

Advances in

[4] Key Impossible Differential Attacks on
Reduced-Round AES-192, Proceedings of

June 2014 Vol —1II Issue - 1 71

(5]

(6]

(7]

(8]

(9]

International Journal of ICT and Management

Selected Areas in Cryptography 2006,
Lecture Notes in Computer Science
4356,pp. 15-27, Springer, 2007.

Daniel J. Bernstein. Cache-timing attacks on
AES. April2005 http://cr.yp.to/antiforgery/ca
chetiming-20050414.pdf

Guido Bertoni, Luca Breveglieri, Matteo
Monchiero, Gianluca Palermo, and Vittorio
Zaccaria, AES power attack based on
induced cache miss and countermeasure.
ITCC (1), 2005.

Bruce Schneier (2009-07-01). "New Attack
on AES". Schneier on Security, A blog
covering security and security technology.
Archived from the original on 8 February
2010. Retrieved 2010-03-11.

Biryukov, Alex; Khovratovich, Dmitry
(2009-12-04). "Related-key Cryptanalysis of
the Full AES-192 and AES-256". Retrieved
2010-03-11.

Nikoli¢, Ivica (2009). "Distinguisher and
Related-Key Attack on the Full AES-256".
Advances in Cryptology — CRYPTO 2009.
Springer Berlin / Heidelberg. pp. 231-249.
doi:10.1007/978-3-642-03356-8 14.

ISBN 978-3-642-03355-1.

[10]Endre Bangerter, David Gullasch and

Stephan Krenn (2010). "Cache Games —
Bringing Access-Based Cache Attacks on
AES to Practice".

[11]"Breaking AES-128 in realtime, no

ciphertext required | Hacker News".
News.ycombinator.com. Retrieved 2012-12-
23.

ISSN No. 2026-6839

