International Conference On Management, Communication and Technology (ICMCT)

ABSTRACT: Parallel processing in a computer
enhances performance for high speed computing
and it can be carried out by using many techniques
and architectures at software and high hardware
level. Performance optimization using hardware
techniques may include the use of multiple
computing nodes or a single node consisting of
multiple processors. Symmetric multiprocessor is
one of the modern architectures used to perform
far-reaching computations. Symmetric
multiprocessors have many configuration
approaches to carry out these substantial
computations. The performance of Symmetric
multiprocessors is analysed and compared with
high reliability models. Processor models are used
to design and construct the architectures of
symmetric multiprocessors. In this research paper,
critical design aspects of symmetric
multiprocessors have been analysed for further
enhancement of the existing technology.

KEYWORDS: System Performance, Symmetric
Multiprocessors, Clusters, Parallel processing,
Process scheduling, Speedup, Cache Coherence

I INTRODUCTION

The demand for the processing speed is
growing at an incredible rate. The capability of
execution according to speed and efficiency
can be increased by different kind of ways like
enhancing the CPU programming like
inserting new programming, arrange new
registers to the model of microprocessors and
grouping up the CPUs[9]. Chip improvements
are required for the first two options but the
third can boldly increase the processing power.

However, the “CPU grouping” approach is

affordable because:

e If we enhance the CPU programming, more
efforts would be required to integrate the
programs and registers.

e If one processor is faulty, the life of the
computer would be increased by multi
processors.

April 2015, Vol III Issue — 1

Hence, we have a choice, to rely on internal
changes of the CPU or we combine multiple
processors/CPUs. Symmetric multiprocessing
isa

case of parallel multiprocessing [5], [11]. The
symmetric multiprocessing system consists of
multiple similar processors within the same
computer. The processors are interconnected
by a bus or some type of switching mechanism.
Each processor has access to a common
memory including its own cache. All
processors behave identically and the kernel of
operating system can assign any process to any
processor. A Single instance of the operating
system manages all processors. Applications
have uniform access to memory and I/O. These
operating systems are more special and
complex unlike typical operating systems.

=1 o
IL!c.m xruire |'.w;m
== '

(2Cxhe | 12 Cactm
o]
- -
4
64 | »
—
Subsystem \

Symmetnic Muliprocesser Onganizason
Fig. 1: Symmetric Multiprocessor Organization

In order to maximize the advantages of
symmetric multiprocessing, we required an
additional synchronization code for data
structures to maintain the consistency and
balance the work load between multiple
threads of multiple processors[9], [5]. On a
multiprocessor ~ system, scheduling is

61 ISSN : 2026 - 6839

International Conference On Management, Communication and Technology (ICMCT)

multidimensional. The scheduler allocates
processes to the CPUs to execute it. This
complicates the processing paths and signals of
multiprocessors. Thus efficient
multiprogramming is required to avail the full
and maximum processing. Symmetric
processors have their own front side bus that’s
why they have the advantage over cores.

The scalability of symmetric multiprocessors
can be increased by using mesh architecture.
SMP is one of the earliest types of computer
architecture and mostly used up to 8
processors. These multiprocessors share a
common main memory and I/O. A
microcontroller controls data flow throughout
the processors and main memory [12]. Each
processor has a dedicated cache for better
latency and data brought into each processor’s
registers can be transferred through its cache
rather than from main memory. The question
arises here that may be a process on data can
be cached by multiple processors. To avoid this
incidence there is an update policy called cache
coherence that ensures each processor is
working on recent copy of data. The basic
architecture we use for coherence is snoopy
bus architecture (discussed later).

11 SMP CLUSTERS

A cluster is a group of interconnected whole or
complete computers working together as a
unified computing resource and can create the
illusion of being a single more powerful
machine. Each complete computer can run on
its own, apart from the cluster. In other words
a computer cluster is a team of linked
computers forming fast local networks.
Clusters are usually used to increase the speed
and performance over single computer. They
are cost effective and available to high
performance computing. They are operated on
having redundant CPU nodes [12], [8]. The
capability to control more clients by giving
more jobs and data access is done by scaling
server side processor. We can have cluster of
shared memory like: Each node has its own
local memory, and nodes share data by passing
data over the network. Client computers
bonded to clusters of SMP server have given
the computing power of Divide and Conquer
Algorithms. Clusters provide the scaling of
/O, processors, and storage but not of client
management methods, or security. Grid’s
computing domain is scaling. Grid computing
provides services like client management or
security. With some careful analysis on SMP
nodes and cluster architecture, we can scale
these systems precisely and with very limited

April 2015, Vol III Issue — 1

waste of resources. Also the communication
between cluster nodes is much greater than that
of between multiprocessing in SMP [12].

Os:0n OV OV I UAN D o8 '
. - . i . - J
Uwwry ey
w o
¢ i
,2_
— £
3§
81 8
ERE
i
§
! '
o 2
Meewry L

o o % O | W N0

Fig. 2: SMP Cloud
A. SMP Software features

In multiprocessors all processors use the same
order of rules just like in a single processor
system. Factors that may hinder speedup in a
multiprocessor system include, among other,
conflict over memory access, conflict over
communication paths, inefficient algorithm for
implementing the concurrency of the
processors. The thread which comes out of this
rule of processing, are globally analyzed and
reordered with respect to each other in the
shared area [4]. The thread visits the processors
as multithread. So multiprogramming is
required to produce multi threads. If the
operating system does not partition the threads
in multi-way multiprocessors, then it is better
to use a uni-processor instead. In fact it could
be a worse situation, because it may suffer
more locking overheads and process delays
when dispatched to other processors, it may be
slower. There are different ways to achieve
parallel threads execution of a single program:

i Make parallel calls to library
subroutines to create parallel multi
threads that can run at a same
instance.

ii. Execute the program with a
parallelizing compiler. It will help us
to detect threads that are not
dependent on other thread that is to be
executed on second instance and
generate a parallel multithreaded
parsing code.

iil. Use multithreaded software.

The maximum improvement can be analyzed
and achieved by a rule that is called Amdahl's
Law: It says increase of speed can be achieved
by a formula equals to uni-processor time

62 ISSN : 2026 - 6839

Sorege Ares
Nefwork

International Conference On Management, Communication and Technology (ICMCT)

divided with the sum of sequence time and

time of multi-processor.

A parallel program has a sequential part and a

parallel part, the proportion for both of them

are f and (1 - B)

Assume the total execution time for a single

processor is T=pT1 + (1 - p)T1

The total execution time for p processors

would be

Tp=pT1+(1-P)T1/p

Speedup (p)=1/[p+(1-) /pl =p/ (Bp + 1

-PB1/p

e If fis an inherently sequential fraction of
execution time, then

Speedup <p 1/[f+ (1 -f)/p]

e Corollary: Maximum speedup = 1/f

I11. OPERATING SYSTEM
SCHEDULING

A SMP unit has a similar view of the memory;
any task has the capability of running on any
processor. But in fact, it is not a correct way to
let a task wandering between different
processors to be processed [9]. When a thread
migrates to a processor, the data which is
currently present in first cache of that processor
also has to be moved towards the other
processor. So each processor can have its copy
and can be replaced again on the memory. This
is handled by the cache coherency. If we
introduce the processor property to each task
and bound that task to execute on the same
processor, this method is known as processor
affinity. But this method is not suitable for
locking because for example a task is running
on that processor and suddenly blocked. The
task which is already waiting in a queue and
ready for execution would suffer extra time [9],
[10]. Therefore modern SMPs can assign any
task to any processor. In Windows NT there are
no separate schedulers. A thread produces
events. These events are handed over to the
event handler modules of the windows kernel.
Events Like creating a new task, task asleep,
blocking of tasks on synchronization and task
terminator. Windows scheduling is totally
based on the time quantum mechanism. Each
task has a time period. It is a time in which
operating system checks the task priorities. To
do task switching there is time tick period. The
tick is custom set to 10 ms for uni-processors,
and 14 ms for SMP. On single tick, time is
decreased by 3. When time period value
reaches zero, task will be put away and recalled
again soon.

A. Seven States Model for OS
Processes/Threads

April 2015, Vol III Issue — 1

Normally, Windows NT has “32” priorities.
0 priority is for idle process. Windows may
keep on changing priority to avoid starvation,
indefinite postponement deadlock etc. The OS
kernel maintains 1 queue ready for each thread
priority. There is a bit mask of (32 bit) which
tells which task is ready to be performed and if
its idle it tells scheduler that processes are idle.
If none of any processor is found idle, the
scheduler will preempt the lower priority task
on interrupt. Every processor has assigned
each task and the last processor on which it was
executed is saved. Another way can be that we
do process switching but the fact is process
switching costs more than thread switching. So
it’s better to divide the threads and allocate to
the multiple processor.

Terminate

[Short Term)

Prempt "
Scheduling B
Run
Create
Ready Blocked
Unblock
Medium Term
Scheduli v
9 Suspend Resume Suspead Resume
Ready Blocked
Sespended Unblock Suspended

Fig. 3: Seven State Process Model
B. Lock Characteristics

A uni-processor blocks a task. While in any
operating system, executing parallel codes,
there is a need of locking technique. Lock is
used to ensure that no other task is executing
outside a restrictive point. The purpose of lock
is to grant that task which is waiting for the
lock permission to carry on. Locks provide a
way for process communication and
synchronization. Locking concept is used to
prevent other processes access to incomplete
data. Interrupt disabling is not the solution to
prevent data modification by another processor
in SMP case. Therefore locking mechanism
controls data between the multiple processors.
There is a lock variable which has to be free to
acquire processor by writing some value to it.
After the first processor, another processor is
able to read and write the lock variable. Thus
lock is free for the both processors. This lock
is applied to tasks and ISR and can be applied
to the cache -line of the processors [4].

If we apply lock to cache, no distinct bus traffic
disturbance is expected. The locked cache will
hit the bus until another processor will need

63 ISSN : 2026 - 6839

International Conference On Management, Communication and Technology (ICMCT)

this for operations like Exchange, Compare
and Addition etc.

A programmer must know how many locks
should be created. For example if spin lock is
created: A spinlock must not be recursive, as
the processor would be continuously spinning
on the lock with no one to release the lock. Too
much poll will affect bandwidth and too low
will delay. So remain balanced. The existence
of multiple locks makes a deadlock possible.
More than needed locks effects throughput.
For example in case of mutual- exclusion
locks, with 9 instances of a program running in
parallel, the 9 instances would not be
synchronized effectively to avoid waiting for
other process.

IV. CACHE COHERENCY WITH NON
— UNIFORM MEMORY ACCESS
(CC-NUMA)

In symmetric multiprocessors every processor
has its own cache, so the obvious possibility is
that every cache has the same copy of data to
be executed. If more than two threads modify
the same data, it concludes with no data
coherency [3]. The solution is to invalidate
other copies of data except one, by
broadcasting on the shared bus. Invalidation is
performed by cache controller hardware [13].
Cache controller hardware watches flow of
data over the bus. This method is known as
snooping protocol. Directory based coherence
protocol is another model [4], [7]. After
invalidation, there are two methods to update
main memory [10]:

Write through: In this method the controller
updates the memory as soon as possible for the
other processors after writing the data. Write
back: In this method the controller doesn’t
updates the memory cell unless another thread
comes and demand for that cell. If one
processor has demanded the same data in the
memory, it is better to retrieve it from the cache
of other processor. Main memory will take
more time to recognize the recall.

Cache Coherency Solutions There are three
states of cache blocks of Snoopy protocol:
Shared (block is ready to fetch and read),
Exclusive (block is ready to write and there are
no other copies of it), Invalid (block has no
data) [15]. These states are implemented when
CPU demands for any cache block.

A. MESI Protocol
The snoopy protocol model is ideal for on chip
supported caches. But in most of the small

scale SMP’s MESI protocol model has been
implemented. The MESI protocol is an

April 2015, Vol III Issue — 1

example of scheme that employs snooping.
There are four states of MESI protocol:
INVALID, SHARED, MODIFIED &
EXCLUSIVE.

aut™
\ Food mme
Shared |
5
§ S CPU wiitty
-1 - Place weie miss on s
5 8
28
Invalid E g
£k
™, Cay . .
0 g - s 4
¥ Mg, w S
" Doy Exclusive 5% \.:9
Cace stones Rood ,p
Ve it

Fig. 4: Cache states in the Snoopy Protocol

nesey

SNOOP WRITE M7
SNOCOF READ MIY

WHNITE MLY
READ O= READ MIY

WRITE MiT

Fig. 5: MESI Protocol

For example cache has been hit and sent from
modified state to shared state. Now address has
been shared in both caches. The process is
modified and arrived towards the cache which
one was requesting for it. On the other side
cache which has the modified data can refuse
to share, writing it back to the main memory
and then requester can get data from the main
memory.

Read and write are not enough, we have to add
some more to increase the performance
efficiency of coherency model. The processors
address bus must be available to the controller
so that tags of the addresses can be matched
and state of invalidation can be performed.

64 ISSN : 2026 - 6839

International Conference On Management, Communication and Technology (ICMCT)

B. Token Coherency Protocol

Since the message passing technique was
difficult in direct connections, a new protocol
model was designed for direct processor
interconnections as well as for switched based
interconnections in 2003. Token coherency
technique simply uses counting and exchange
of tokens. Each block is mapped with fixed
number of tokens. Processor should have all
the tokens in order to write a block but to read
a block at least 1 token is required [1].
Encoding bits of tokens is done by the formula
Log2N, where N = no. of tokens.

In this protocol processors can predict and ask
other processor for the required token if it has.
Token coherence model can perform 20 - 30%
faster than the snoopy protocol. Counting of
tokens gives safety to coherence invariant -
single writer and multiple readers. If a
processor failed to acquire data, a timeout
message will be sent to requestor, and a
persistent request will be sent. Request persists
until it is satisfied and deactivated upon
completion. It reduces starvation as well.
Token snooping is more efficient in direct
processors interconnection. The graph given
below is between indirect interconnected SMP
on Normalized runtimes.

C. System
performance

Scalability and

A parallel computer with n processors under
normal circumstance should be n time faster
than a single processor system. However, this
is not always the case. The speedup can be
much less than n. Scalability is the
performance of Multiprocessors. As expected,
adding more processors should increase the
overall performance accordingly, for example
two processors should increase the
performance twice as compared to one
processor. But in actual fact, adding processors
increase the scalability so it reduces some as
well. That is due to:
e Conflict over memory access
e Conflict over communication paths
e Inefficient algorithms for
implementing the concurrency of the
processors
e Cache coherency pipelining
e Time taken by number of cycles by
spin lock
e Synchronization conflict
The fact is, if one processor provides 1 speed.
Two processors provides 1.75 with an increase
of 0.85 and eight processors will provide 5.2 -
5.5, according to Amdahl’s law, the speed and
performance gradually decreases but not a big

April 2015, Vol III Issue — 1

deal as compared to uni-processors. Thus
scalability and performance can be increased
by

e Increasing memory band-width,

e Shortening the latency of memory
access time (maybe we should design
anew memory scheduling techniques
and algorithms), and

e Reducing the gap between memory so
that starvation could be less possible.

The Threads received by SMP is distributed to
all processors equally. If we run Windows NT
on a single CPU, as we know that threads are
distributed by multithreaded operating system.
The result of parallel threads can be shown by
this graph.

a50%
RNo%

250%

Time

150%

Threads

Fig. 7: Threads Behaviour on a Single Processor

65 ISSN : 2026 - 6839

. test }
. test

test 1

International Conference On Management, Communication and Technology (ICMCT)

V. SMP Network Architecture
A. NUMA Architecture

SMP is a basic form of UMA (uniform
memory access) architecture. The
interconnection of SMP with other SMPs
through Interconnection network(s) and
switches forming the clusters are known as
NUMA (non- uniform memory access). UMA
is best for not more than 8 processors due to
scalability issues. But NUMA or (Cache
Coherence NUMA) makes it preferable due to
its scalability for more than 8 processors,
because every unit of processors have their
own local physical memory which is easy to
access but logically there is one address shared
space.

Fig. 6: CC— NUMA Architecture

Users prefer NUMA on multiprocessor
architecture because they believe that
programming is easier and due to non-required
extra library of the compilers. The time
required to access data depends upon its
location, whether it is present in local memory
or may be residing over remote memory. A
single image of operating system runs all over
the network. If one processor will modify any
data the other processors will also update data
into their cache.
Logical address space contains pages; these
pages have some states which are passed to
track the position.

e NO-PRESENCE: they are in remote

memory
e SHARED: copies are distributed to
local memories

e EXCLUSIVE: In local memory”
The latency for accessing data in comparison
of both local memory as well as non-local
memory is calculated by NUMA Factor. For
example data access from the neighbour node
is faster than the node which is present on a
distant level. For NUMA factor we have to

April 2015, Vol III Issue — 1

engineer different inter-connection design for
the nodes. For example: Indirect fat tree, 2D
torus, 4D hyper cube, Hierarchical Inter
connection, Omega network, Ring, cross bar ...
etc.

Q Lnea -
Completosy e
Comnectod S >4 | Ry
|
Q . Gl (I8 B Al R o
T g Mesh - 141o—1d
. W o) » G
14
a0 - = £ o—)
Hperoste of o' «.YQ o
| A A T
a B
X r—

Fig. 7: Multiprocessor Interconnection Topologies
B. COMA Architecture

COMA (Cache Only Memory Architecture) is
made for large SMP networks just like NUMA.
In this structure memory are replaced by cache
memory or we can say acting like cache
(attraction memory). Their addresses are
hashed to DRAM cache lines. Data is readable
at any of modulo at any single instance and is
moved by hardware. This ability of making
copies, proved this structure extremely time
effective. If the OS algorithms are poor,
COMA compensates it, but it requires separate
memory boards along with coherence
interconnection memory board.

VI CONCLUSION

Parallel and distributed computing has grown
affectedly the last few decades to achieve the
emerging requirements of computational far-
reaching applications. There are different
techniques to implement distributed computing
environments. The most prominent method is
to use symmetric multiprocessors architecture
for achieving high performance distributed
platforms. Symmetric multiprocessor
architectures have an extensive ability to
manage multiple real time threads for active

applications. Although the current
architectural scenarios being adopted for the
design of symmetric = multiprocessor
architectures are demonstrating enough

computational power, there is room for

improvement

through further

research.

Different issues including synchronization,
pipelining, protocols, hyper threading,
coupling of GPU and SMP and dealing with
SMP clouds are all factors to consider for
further research.

66 ISSN : 2026 - 6839

International Conference On Management, Communication and Technology ICMCT)

VIIL.

(3]

(7]

(8]

(9]

REFERENCES

Adve, S. V. and Gharachorloo, K.
Shared M emory Consistency M odels:
A Tutorial. IEEE Computer, 29(12):66 —
76, Dec. 1996.

Fernandez-Pascual, R.. Garcia, J. M
Acacio, M .E. and Duato, J. A Low
Overhead Fault Tolerant Coherence
Protocol for CMP Architectures. In
Proceedings of the Thirteenth IEEE
Symposium on High-Performan

Hung, A. Bishop, W. and Kennings, A.
Enabling Cache Coherency for N-Way
SM P Systems on Programmable Chips.
In Proceedings of the 2004 Intl.
Conference on Engineering of
Reconfigurable Systems and
Algorithms, Las Vegas, Nevada, June
2004.

Hung. Cache Coherency for Symmetric
Multiprocessor Systems on
Programmable Chips. M. A. Sc. Thesis,
University of Waterloo, Waterloo,
August 2004.

John, P. Shen & M ikko Lipasti. M
odern Processor Design: Fundamentals
of Superscalar Processors. McGraw-
Hill 2002.

Kim, S. Chandra, D. and Solihin. Y.
Fair Cache Sharing and Partitioning in a
Chip Multiprocessor Architecture. In
Proceedings of the International
Conference on Parallel Architectures

Martin, M . M. K. Formal Verification
and its Impact on the Snooping versus
Directory Protocol. In International
Conference on Computer Design. I[EEE,
Oct. 2005.

Mohsan Tanveer, M. Aqueel Igbal,
Farooque Azam. Using Symmetric
Multiprocessor Architectures for High
Performance Computing Environments.
International Journal of Computer
Applications, Volume 27 — No. 9
August 2011

Sahoo, D., J. Jain, S. K. Iyer, D. L. Dill
and E. A. Emerson, Multi-threaded
reachability, The von Neumann
Architecture

April 2015, Vol III Issue — 1

[10]

(http://www.csupomona.edu/~hnriley/
www/VonN.html).

Senouci, B. Kouadri, A. M . Rousseau,

M , F. . Petrot, F Multi-CPU/FPGA
Platform Based Heterogeneous
Multiprocessor ~ Prototyping: New

Challenges for Embedded Software
Designers The 19th IEEE/IFIP
International Symposium on Rapid
System Prototyping, 2008. RSP “08

[11] Serveurs Architectures: M ultiprocessors,

[12]

[13]

[14]

67

Cluster Parallel Systems, Web Servers,
Storage Solution René J.
Chevance,2004

Simon Kégstrom: Performance and

Implementation Complexity in M
ultiprocessor Operating System
Kernels. Blekinge Institute of

Technology, 2005.

Stallings, W. Operating Systems (6th
ed.): Internals and Design Principles.
Prentice-Hall, Inc. Upper Saddle River,
NJ, USA, 2008.

Tuck, J. Ceze, L. and Torrellas, J.
Scalable Cache M iss Handling for High
Memory-

Level Parallelism. In Proceedings of the
39th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec.
2006.

ISSN : 2026 - 6839

