International Journal of ICT and Management

Security of Open Source and Closed Source Software
:An Empirical Review of Published Vulnerabilities

Mr. Selassie Kennedy Kofitse
Research Scholar
Sikkim Manipal University,
Accra, Ghana
selaseken@gmail.com

ABSTRACT: Literature on open source and closed source
security most often than not is based on the posture of the
discussants, be it pro open source or close source which is
often determined by biased attitudes toward one of these
development styles. The discussion is normally driven
by emotions instead of hard data. To bridge the
opinionated attitude towards this subject this paper
contributes to solving this problem by analyzing and
comparing published vulnerabilities of six open source
software and six closed source software packages, all of
which are widely deployed. Thereby, it provides an
extensive empirical analysis of vulnerabilities in terms of
mean time between vulnerability disclosures, and the
severity of vulnerabilities. The investigation reveals that (a)
the mean time between vulnerability disclosures was lower
for open source software studied, (b) regarding the severity
of wvulnerabilities, no significant differences were found
between open source and closed source vulnerabilities (c) it
was established that “Given enough eyeballs, bugs are
shallow.” concept holds true for open sources since more
vulnerabilities are identified and fixed within records time
too.

KEYWORDS: Vulnerabilities, security, open source
software, closed source software

l. INTRODUCTION

The logic is understandable - how can software with
source code that can easily be viewed, accessed and
changed have even a modicum of security? In the past,
software is acquired by procuring licenses for a
proprietary, or binary-only, immaterial “object”. Then
software was regarded as a good that we have to pay for
just as we would pay for material objects, such as car or
food. In contemporary times, this widely cultivated
habit has begun to be accompanied by a new model,
which is characterized by software that comes with a
compliable source code. The source code is made
available, free of charge, to all interested parties; further
users have the right to modify and extend the program
in most cases these days. Open Source Software (OSS)
methods rely on developers who reveal the source code
under an open source license. Historically, much of the
software was completely available without a precise
license governing its use. This liberal state of affairs led
to unethical use and behaviour of programmers. This
led to the development of new approaches with
reference to distribution of software by Richard

October 2015, Vol 111 Issue — 2

Stallman, a programmer at Massachusetts Institute of
Technology in the 1980s, where he suggested that the
license should be General Public License (GNU).
Under certain types of open source licenses, any further
development using the source code must also be
publicly disclosed. In discussing open source [9]
reminds us that, free and open source software dates
right back to the origins of the computing field, as far
back as the 1950s, when all software were free, and
most of it open[6].

While there is consensus that opening source code to
the public increases the potential number of
reviewers, its impact on finding security flaws is
controversially debated. Proponents of open source
software stress the strength of the resulting review
process and argue in the sense of [7] that, “Given
enough eyeballs, bugs are shallow.”, while some
opponents follow the argument of [5], who remarks
“Sure, the source code is available. But is anyone
reading it?” Interestingly, both parties essentially
agree that open source basically makes it easy to find
vulnerabilities; they only differ in their conclusions
with regard to the resulting impact on security[6].

In order to have an unbiased discussion on open
source and closed source security, it is helpful, if not
necessary, to transparently measure the empirical
security of software — be it open source or closed
source software. However, measuring security is a
challenging task, because security is somehow
invisible. Despite an increasing number of
quantitative research papers on measuring software
security in the past years, it is still true what[11]
observed: what the discussion on software
security specifically lacks is appropriate metrics,
methodology and hard data.

Addressing this research gap, this thesis analyzed and
compares published vulnerabilities of six open source
software and six closed source software packages, all
of which are widely deployed. More specifically, this
empirical study statistically analyses vulnerabilities in
terms of the mean time between vulnerability
disclosures, and the severity of vulnerabilities.

ISSN : 2026 - 6839

1. RESEARCH REVIEW/METHODLOGY

A. Open and closed source software

The availability of source code to the public is a
precondition for software being denoted as “open
source software” in most cases. Beyond this
requirement, the Open Source Initiative (OSI) has
defined a set of criteria that software has to comply
with[10]. The definition particularly includes
permission to modify the code and to redistribute it.
However, it does not govern the software
development process in terms of who is eligible to
modify the original version. When what is called
“bazaar style” by [5] is in place, any volunteer can

provide source code submissions. Software
development is then often based on informal
communication between the coders[10]. In a more

closed environment, software is crafted by individual
wizards and the development process s
characterized by a relatively strong control on
design and implementation. This style is referred to
as “cathedral style” [5]. The implementation of this
modification procedure might have an impact on the
security of software, so that a detailed discussion of
open source security would need to consider it.

Open source software is widely held to be more secure
than closed source software. The core of the argument
is that with open source code, many people have the
potential to find and correct an error. This is
summarized as “given enough eyeballs, all bugs are
shallow" [10]. While researchers have attempted to
quantify and measure this effect [11], it is inherently
complex. Software projects differ in complexity,
features, scope, and user base; the number and severity
of vulnerabilities may be linked to these differences.
Therefore, attributing the vulnerabilities to the
open/closed choice is difficult. Furthermore, recent
research suggests that there may be diminishing returns
to increased number of users in the context of software
or other community build artifacts[10].

Therefore, many closed source projects could already
have “enough eyeballs" and open source projects could
have more than enough. In fact, recent empirical
research finds limited differences in vulnerabilities
disclosed in each type, but also finds some evidence of
more frequent disclosures in open source [11].

October 2015, Vol 111 Issue — 2

International Journal of ICT and Management

B. Vulnerabilities

| publshed |
{ by biackhz |
: kywhite hat |

i avdaeam o nml

Figure 1. Classification of software bugs and vulnerabilities

A software bugis an error, flaw, failure, or faultin a
computer program or system that causes it to produce
an incorrect or unexpected result, or to behave in
unintended ways. Most bugs arise from mistakes and
errors made by people in either a program's source
code or its design, or in frameworks and operating
systems used by such programs, and a few are caused
by compilers producing incorrect code.

Bugs trigger errors that can in turn have a wide variety
of ripple effects, with varying levels of inconvenience
to the user of the program. Some bugs have only a
subtle effect on the program's functionality, and may
thus lie undetected for a long time. More serious bugs
may cause the program to crash or freeze. Others
qualify as security bugs and might for example enable
a malicious user to bypass access controlsin order

to obtain unauthorized privileges.

When software is executed in a way different from
what the original software designers intended, this
misbehaviour is rooted in software bugs. . The portion
of bugs that are security- critical (“vulnerabilities”) is
assumed to be 1% [2], resulting to an amazingly
high figure of 350,000 vulnerabilities in Windows
2000. Detected vulnerabilities can further be divided
into those being published and unpublished.

Vulnerabilities are (software) product-related
weaknesses, for which publicly accessible databases are
available. Rooted in these are concrete security
incidents (breaches), which are system-related and
cause the actual harm. Breaches are much more
difficult to investigate, because data is scarcer.

Once vulnerability is detected, the question arises
whether to disclose it or not. Researcher argues against
disclosure unless vulnerabilities are correlated.
However, investigating the operating system FreeBSD
finds vulnerabilities being correlated regarding its’
rediscovery and argues in favour of disclosure. Using
game -theoretic models, address the question of when

ISSN : 2026 - 6839

software vulnerabilities should be disclosed and
conclude that neither instant disclosure nor non-
disclosure is optimal[3][4].

C. Software Packages and Data Sources

Is there a difference between the publication of
vulnerabilities occurring in open source and closed
source applications?

Ho: There is no significance difference between
vulnerabilities disclosure of open source and close
source application.

H1: There is a difference between vulnerability
disclosure for open source and close source.

The selection of software packages to get investigated
is driven by the goals to:

i have open and closed source software systems
that serve the same purpose (for the sake of
comparability),

ii. consider software that is known and relevant
to the community.

Each of the selected software bundles is analyzed
regarding its vulnerabilities, as published in the
National Vulnerability Database (NVD) of the

National Institute of Standards and Technology
(NIST). This database is one of the most
comprehensive vulnerability databases. | analyze

each software product regarding the number of
vulnerabilities, the disclosure rate, and the severity of
vulnerabilities.

Application Type Product
Internet Explorer 7
Browsers - :
Mozilla Firefox 3.0
- Ms Outlook 12
Email Client _
Thunderbird 3.0
11S4.0
Web Server
Apache 2.2
. MS Office 2007
Office _
Open Office 3
. Windows 7
Operating Systems -
Red Hat Linux 6
Database Management | PostgreSQL 9
Systems Oracle 11g

Tablel: Bundle of applications for the study.

D. Vulnerability Measurement

In measuring vulnerability “mean time between
vulnerability disclosures” (MTBVD) was defined as
the number of days since a software is release
divided by the number of published vulnerabilities.
With regard to determining the MTBVD,
consideration was given to only those vulnerabilities
that have been published after the release date and

October 2015, Vol 111 Issue — 2

International Journal of ICT and Management

limited between January 2010 and February 2015.
This does not include vulnerabilities before the
current release version of the software in question.

A simple comparison of MTBVD is not assumed
to provide reliable results regarding the level of
security, because vulnerability detection and
publication alone could be influenced by other
factors too.

1. DATA COLLECTION

In the few empirical studies on software security [1]
[71[8], the application types mainly considered are
operating systems, web browsers, web servers, email
clients, and database management systems. Adopting
this focus, this study considers two operating systems
(Windows 7, Red Hat Enterprise Linux 6), two web
browsers (Internet Explorer 7, Mozilla Firefox 3),
two web servers (11S 6, Apache 3), two email clients
(MS Outlook 12, Thunderbird 3), two database
management systems (PostgreSQL 9, Oracle 11g),
and two office products (MS Office 2007, Open Office
3).

A. Vulnerability sources

I consider those wvulnerabilities that have been
accepted as Common Vulnerabilities and Exposures
(CVE) by MITRE. Each of these vulnerabilities has a
unique identifier, e.g. CVE-2015-0836. CVE
identifiers are also used as references in many other
vulnerability databases. The NVD feeds contain data
on the severity and type of vulnerabilities. Data
excludes misconfigurations (CCE = Common
Configuration Enumeration).

Overall, | consider two types of vulnerabilities:
those that are explicitly applicable to the software
version under consideration, and those that affect all
versions of the particular software and that have been
published after the release date of the considered
version. The data used in this work refer to
vulnerabilities that have been published prior to 28
February 2015 and after 01 January 2010.

The National Vulnerability Databaseis the U.S.
government repository of standards-based vulnerability
management data represented using the Security
Content Automation Protocol (SCAP). This data
enables automation of vulnerability management,
security measurement, and compliance. NVD includes
databases of security checklists, security related
software flaws, misconfigurations, product names, and
impact metrics. NVD supports the Information Security
Automation Program (ISAP). In addition to providing a
list of Common Vulnerabilities and Exposures (CVES),
the NVD scores CVEs to quantify the risk of
vulnerabilities, calculated from a set of equations based
on metrics such as access complexity and availability of
a remedy.

ISSN : 2026 - 6839

’ 77
(Pl 7

International Journal of ICT and Management

Current
i | ol el Mt |l | | i
V. RESULT ANALYSIS
15 6.0 9 2007 8| 194 | 304| 132+
Apache.2 17| 2005 10| 365242 | 2144585+
Microsoft Outlook
Total Number of Vunerabilities 2 18] 2007 8| 292194| 1623 | ****50
Thunderbird 3.0 459| 2009 5| 182121 40| Nodata
3000 Office 2007 136 2007 3| 202194| 215 7200%**xx
A% Open Office 3 29 2008 6| 255%7| 882]212vre
Red Hat Linux 6.0 53| 2010 4| 146097 276 | 153*
2000 il Windows 7 381 | 2009 5| 182621 4.8 55.99*
i Oracle 11g 170 | 2007 8| 202194| 172328
1000 35 367 H38 o 140 PostgreSQL 9.0 32| 2010 4| 146097 | 457 5.6%***
m . . . Internet Explorer 7 444 | 2006 9| 328718 7|57.3%
0 “.f T T = e | Mozilla Firefox 3.0 651| 2008 6| 25567 18.8 | 11.6**

2010 2011 2012 2013 2014 2015 Total

Table 3: MTBVD and market shares

Figure 2: Vulnerability Disclosures by Years
g y y Bundles Application Llow | Medium | High Grand Total Percentag-e
Severely high
Apache2.2 2 12 3 17 17.6
Apachel. Intemet | Mozilla | Office | Open Vicrosoft Postyre|Red Hat (Window| Grand Web Servers | 115 6.0 3 5 1 9 1
2| 11560 |Explorer| Firefox | 2007 | Offce [Orack 190utiook 12 ThunderbirgSQLY |Linx6 | s7 | Totdl Internet Explorer 7 I 16 6 444 14
U I O T < N L A I) Browsers | Mozilla Firefox30 | 309 | 318 | 24 651 37
0l] 0l 0] B[0] 9] ® 0 [16 |m| W Office 2007 3 133 0 136 0.0
N2 1 1 B |18 B 6 % 0 j 9| 4 4 38 Office Open Office 3 3 26 0 29 0.0
JUIE] 4 INRCERCERY 4 1 4 113 6| ¥ | 00| 5B Microsoft Outlook 12 1 1 6 18 333
N4 0 T || W 1 4 5 B 9| 4 % 53 Email Client | Thunderhird 3.0 232 217 10 459 22
w0 [o w s s o 4 s o[t]B]| W Database | gracle 11 95 | 4 | 29 170 171
Management
GrandTotal | 17 9 44 | 61| 1% 9 1m 1§ 459 2 53 381 89
System | PostgreSQL 9.0 a | ujo & 00
Operating | Red Hat Linux 6.0 18 30 5 53 9.4
Table 2: Vulnerability disclosure by individual applications by years. Systems | Windows 7 242 | 131 8 381 21
Total 941 1366 92 2399 38

Bar graph showing statistical Calculation based on
Vulnerabilities

10.0
5.0
0.0
SIS RS
Y'Q{b \\%\&6 @o‘b O& Q) @\Q&’ K QO% N

B Mean M Median Sd

Figure 4: Showing Statistic of the applications

October 2015, Vol 111 Issue — 2

Table 4: Bundle of applications and levels of vulnerability.
V. DISCUSSIONS

A total of 2399 vulnerabilities were published between
the defined dates for the selected bundles of study. 2013
recorded the highest made up of (578) 24 percent of
total vulnerabilities across the various years and 2015
recorded (140) 5.8 percent.

A total of 1241 constituting 51.7 percent of all
vulnerabilities for the study period was open source
while 1158 constituting 48.3 was closed source for the
subjects under study. This shows that software’s
performing the same task and of the widely used open
source vulnerabilities are to be found faster and patched
than that of close source.

Web Servers: Apache 2.2 been open source web
servers have 17 recorded vulnerabilities with 17.6
percent been severely high while Internet Information
Services (IS 6.0) closed source recorded 9
vulnerabilities with 11.1 percent.

The web server subjects in this study shows that open
source web servers have more vulnerabilities and their
level of severity is more than that of close source. This
can also be due to the fact that the usage of the open

ISSN : 2026 - 6839

source is more wide spread than that of the close source
web servers.

Browsers: Mozilla Firefox 3.0 open source have 651
vulnerabilities with 3.7 percent been severely high and
48.8 percent medium severe while Internet Explorer 7.0
closed source have a total of 444 vulnerabilities with
1.4 percent been severely high and 96 percent falling in
the medium severity bracket.

The concept of whether more vulnerability will be
disclose in open source compared to close source is
established by the facts from the browsers selected in
this study. It is also instructive to note that the level of
the severity of the vulnerabilities in open source is more
than that of close source.

Office: Open Office 3.0 open source had 29
vulnerabilities recorded for the study period and no
severity while Microsoft Office 7 closed source had 136
vulnerabilities with no severity vulnerabilities. Most of
the vulnerabilities for these applications were found
within the medium bracket.

The level of wulnerability disclosure in the office
applications selected in this study, shows that close
source have less vulnerabilities disclose while close
source have more vulnerability. It is also reveling that
despite the fact of close source office have more
vulnerabilities compared to open source, none of them
recorded high severity vulnerabilities. This is highly
significant.

Email Client: Thunderbird 3.0 open source with 459
vulnerabilities and 2.2 percent severity vulnerabilities
while Microsoft Outlook 12 close source have 18
vulnerabilities with 33.3 percent level of severity.

The subjects selected under email client results are very
interesting. The open source thunderbird with as high as
459 disclosed vulnerabilities have only 2.2 percent
severity rate compared to 33.3 percent of high severity
rate for 18 vulnerabilities disclosed for close source.
This presupposes that the more vulnerability likely to
be discovered for the close source software will put it in
a very high risk area. The assertion that more
vulnerabilities will be disclose in open source still
stands.

Database Management System: PostgreSQL 9.0 open
source with a total of 32 vulnerabilities and no level of
severities while Oracle 11g close source has 170
vulnerabilities and 17.1 percent level of severity.

The database management systems subjects’ results are
reveling. PostgreSQL have thirty-two vulnerability
without any high severity vulnerabilities while oracle
has as much as 170 published vulnerabilities with 17.1
percent high vulnerabilities. In conclusion based on the
results database management systems close source is

October 2015, Vol 111 Issue — 2

International Journal of ICT and Management

much susceptible to vulnerability disclosure than that of
open source.

Operating Systems: Red Hat Linux 6.0 open source
with a total of 53 vulnerabilities and 9.7 percent level of
severity while Windows 7 had 381 vulnerabilities with
2.1 percent level of severity.

The wvulnerability disclosure in the operating systems
shows that despite the fact that less vulnerability were
found in open source operating systems there is high
percentage severity of these vulnerabilities compared to
the close source which have high number of
vulnerability disclosure with less percentage of high
severity vulnerability.

In conclusion only three open source applications by
the bundles which meets the assertion that open source
software are more likely to have more vulnerability
disclosures than close source. They are Apache,
Mozilla Firefox and Thunderbird in the web servers,
Email client and browsers bundles.

Apache 2.2 which is open source software recorded the
highest number of days (214) for MTBVD for the set of
subjects studied. This is based on the backdrop of 58.5
percent market share or usage as at February, 2015
(W3Tech 2015). In the same perspective Thunderbird
another open source recorded the least number of days
(4) before the first vulnerabilities was disclosed. It is
worth nothing that the other open source software’s
namely, Mozilla Firefox 3.0, Open Office 3.0,
PostgreSQL 9.0 and Red Hat Linux 6.0 has 19, 88, 17
and 28 MTBVD respectively.

However, Internet Information Services (1IS 6.0) close
source recorded the highest number of days (324) for
MTBVD while Windows 7 another close source
software have its first vulnerabilities disclosed within 7
days.

Juxtaposing the MTBVD with the usage or market
share of the application, it is not far fetch to
categorically state that the more attractive or the usage
of the application the likely hood of finding a very low
MTBVD. But the data available does not support this
assertion. Therefore 1 conclude that wvulnerability
disclosure have no direct relationship between market
share and methodology of developing the application.

The classification of severity of vulnerability used for

the study was based on what is used in the NVD which
is the data source for the study.

1. Vulnerabilities are labeled "Low" severity if they
have a CVSS base score of 0.0-3.9.

2. Vulnerabilities will be labeled "Medium" severity if
they have a base CVSS score of 4.0-6.9.

ISSN : 2026 - 6839

3. Vulnerabilities will be labeled "High" severity if they
have a CVSS base score of 7.0-10.0.

The medians of medians reveal that the vulnerabilities
of office products and Browser and are much more
severe (9.3) than those of Email clients (7.2), while the
values of the other application types are close to each
other. The empirical analysis shows differences in
terms of vulnerability severity for different
application types. However, the number of
investigated software bundles is still too low to deduce
general hypotheses. An investigation of the type of
vulnerabilities might reveal the reasons for the observed
differences.

When we determine the medians of medians of open
source software (6.5) and closed source software (7.0)
and also the corresponding medians of the percentage
of highly severe wvulnerabilities (3.4 and 4.3,
respectively), the first impression is that open source
software is more secure in terms of the level of
severity. Summing up, | find no significant
difference between the severity of vulnerabilities in
open source and closed source software. This
conclusion is based on the two tailed t test statistics of
P =0.127 which is not significant.

VI. CONCLUSION AND FUTURE WORKS

The study was conducted to find an empirical data to
establish the whether there is a difference between
vulnerability disclosure in open source or close source
application. The fact shows that a total of 1241
constituting 51.7 percent of all vulnerabilities for the
study period ware open source while 1158 constituting
48.3 was closed source for the subjects under study. On
the face of this fact it is easy to easily conclude that
disclosure of vulnerability in open source is higher than
close source, but the sample for the study is not that
large so it cannot be generalized. In addition only three
open source applications by the bundles which meets
the assertion that open source software are more likely
to have more vulnerability disclosures than close
source. They are Apache, Mozilla Firefox and
Thunderbird in the web servers, Email client and
browsers bundles.

The is the need to do in-depth research into areas of
particular vulnerability for open source and close
source, Vulnerability development over time and
software line of codes to determine their confounding
factors on vulnerability development and disclosure.

VI. REFERENCES
[1] Alhazmi, O., Malaiya, Y., & Ray, |. (2007).
Measuring, analyzing and predicting security

vulnerabilities in software systems:
Computers & Security, 26, 3, 219-228.

October 2015, Vol 111 Issue — 2

(2]

(3]

[4]

[5]

6]

[7]

8]

[0]

[10]

[11]

International Journal of ICT and Management

Anderson, R. (2001). Why Information
Security is Hard - An Economic Perspective,
in Proceedings of the Seventeenth Computer
Security Applications Conference: New
Orleans, December 10-14, 358-365.

Arora, A., Krishnan, R., Nandkumar, A.,
Telang, R., & Yang, Y. (2004). Impact of
Vulnerability Disclosure and Patch
Availability - An Empirical Analysis, in
Proceedings of the Third Workshop on the
Economics of Information Security: University
of Minnesota, May 13-14, 1-20.

Arora, A., Telang, A., & Xu, H. (2004).
"Optimal Policy for Software Vulnerability
Disclosure”, in Proceedings of the Third

Annual Workshop on Economics and
Information Security: University of
Minnesota, May 13-14, 52-59.
Christensen, Mark J, & Richard H.
Thayer(2001). The Project Manager's
Guide to Software Engineering's Best
Practices. Los Alamitos: IEEE.

Costa, D., & Scott, V. (2005). "CNET
editors' review". CNET Reviews.

Hiran, K.K., & Doshi, R.(2014). “The

Proliferation of Smart Devices on Mobile
Cloud Computing” , LAMBERT Academic
Publishing ISBN: 3659573914

Hiran, K. K., Doshi, R. & Rathi, R.(2014).
“Security & Privacy Issues of Cloud &
Grid Computing Networks”, International
Journal on Computational Sciences &
Applications,4(1), 83-91.

Schechter, S.(2004). Toward Econometric
Models of the Security Risk from Remote
Attacks. Workshop on the Economics of
Information Security.

Tute, C. (2014). Handling Security Issues In
Open Source Projects; Retrieved 12 24,
2014 from,
https://robots.thoughtbot.com/handling-
security-issues-in-open-source-projects.

Witten, B., Landwehr, C., & Caloyannidis,

M. (2001). Does open source improve system
security?, in IEEE Software,18,5, 57-61.

ISSN : 2026 - 6839

