
 International Journal of ICT and Management

October 2015, Vol III Issue – 2 46 ISSN : 2026 - 6839

Security of Open Source and Closed Source Software

:An Empirical Review of Published Vulnerabilities
Mr. Selassie Kennedy Kofitse

Research Scholar
Sikkim Manipal University,

Accra, Ghana

selaseken@gmail.com

ABSTRACT: Literature on open source and closed source

security most often than not is based on the posture of the

discussants, be it pro open source or close source which is

often determined by biased attitudes toward one of these

development styles. The discussion is normally driven

by emotions instead of hard data. To bridge the

opinionated attitude towards this subject this paper

contributes to solving this problem by analyzing and

comparing published vulnerabilities of six open source

software and six closed source software packages, all of

which are widely deployed. Thereby, it provides an

extensive empirical analysis of vulnerabilities in terms of

mean time between vulnerability disclosures, and the

severity of vulnerabilities. The investigation reveals that (a)

the mean time between vulnerability disclosures was lower

for open source software studied, (b) regarding the severity

of vulnerabilities, no significant differences were found

between open source and closed source vulnerabilities (c) it

was established that “Given enough eyeballs, bugs are

shallow.” concept holds true for open sources since more

vulnerabilities are identified and fixed within records time

too.

KEYWORDS: Vulnerabilities, security, open source

software, closed source software

I. INTRODUCTION

The logic is understandable - how can software with

source code that can easily be viewed, accessed and

changed have even a modicum of security? In the past,

software is acquired by procuring licenses for a

proprietary, or binary-only, immaterial “object”. Then

software was regarded as a good that we have to pay for

just as we would pay for material objects, such as car or

food. In contemporary times, this widely cultivated

habit has begun to be accompanied by a new model,

which is characterized by software that comes with a

compliable source code. The source code is made

available, free of charge, to all interested parties; further

users have the right to modify and extend the program

in most cases these days. Open Source Software (OSS)

methods rely on developers who reveal the source code

under an open source license. Historically, much of the

software was completely available without a precise

license governing its use. This liberal state of affairs led

to unethical use and behaviour of programmers. This

led to the development of new approaches with

reference to distribution of software by Richard

Stallman, a programmer at Massachusetts Institute of

Technology in the 1980s, where he suggested that the

license should be General Public License (GNU).

Under certain types of open source licenses, any further

development using the source code must also be

publicly disclosed. In discussing open source [9]

reminds us that, free and open source software dates

right back to the origins of the computing field, as far

back as the 1950s, when all software were free, and

most of it open[6].

While there is consensus that opening source code to

the public increases the potential number of

reviewers, its impact on finding security flaws is

controversially debated. Proponents of open source

software stress the strength of the resulting review

process and argue in the sense of [7] that, “Given

enough eyeballs, bugs are shallow.”, while some

opponents follow the argument of [5], who remarks

“Sure, the source code is available. But is anyone

reading it?” Interestingly, both parties essentially

agree that open source basically makes it easy to find

vulnerabilities; they only differ in their conclusions

with regard to the resulting impact on security[6].

In order to have an unbiased discussion on open

source and closed source security, it is helpful, if not

necessary, to transparently measure the empirical

security of software – be it open source or closed

source software. However, measuring security is a

challenging task, because security is somehow

invisible. Despite an increasing number of

quantitative research papers on measuring software

security in the past years, it is still true what[11]

observed: what the discussion on software

security specifically lacks is appropriate metrics,

methodology and hard data.

Addressing this research gap, this thesis analyzed and

compares published vulnerabilities of six open source

software and six closed source software packages, all

of which are widely deployed. More specifically, this

empirical study statistically analyses vulnerabilities in

terms of the mean time between vulnerability

disclosures, and the severity of vulnerabilities.

 International Journal of ICT and Management

October 2015, Vol III Issue – 2 47 ISSN : 2026 - 6839

II. RESEARCH REVIEW/METHODLOGY

A. Open and closed source software

The availability of source code to the public is a

precondition for software being denoted as “open

source software” in most cases. Beyond this

requirement, the Open Source Initiative (OSI) has

defined a set of criteria that software has to comply

with[10]. The definition particularly includes

permission to modify the code and to redistribute it.

However, it does not govern the software

development process in terms of who is eligible to

modify the original version. When what is called

“bazaar style” by [5] is in place, any volunteer can

provide source code submissions. Software

development is then often based on informal

communication between the coders[10]. In a more

closed environment, software is crafted by individual

wizards and the development process is

characterized by a relatively strong control on

design and implementation. This style is referred to

as “cathedral style” [5]. The implementation of this

modification procedure might have an impact on the

security of software, so that a detailed discussion of

open source security would need to consider it.

Open source software is widely held to be more secure

than closed source software. The core of the argument

is that with open source code, many people have the

potential to find and correct an error. This is

summarized as “given enough eyeballs, all bugs are

shallow" [10]. While researchers have attempted to

quantify and measure this effect [11], it is inherently

complex. Software projects differ in complexity,

features, scope, and user base; the number and severity

of vulnerabilities may be linked to these differences.

Therefore, attributing the vulnerabilities to the

open/closed choice is difficult. Furthermore, recent

research suggests that there may be diminishing returns

to increased number of users in the context of software

or other community build artifacts[10].

Therefore, many closed source projects could already

have “enough eyeballs" and open source projects could

have more than enough. In fact, recent empirical

research finds limited differences in vulnerabilities

disclosed in each type, but also finds some evidence of

more frequent disclosures in open source [11].

B. Vulnerabilities

Figure 1. Classification of software bugs and vulnerabilities

A software bug is an error, flaw, failure, or fault in a

computer program or system that causes it to produce

an incorrect or unexpected result, or to behave in

unintended ways. Most bugs arise from mistakes and

errors made by people in either a program's source

code or its design, or in frameworks and operating

systems used by such programs, and a few are caused

by compilers producing incorrect code.

Bugs trigger errors that can in turn have a wide variety

of ripple effects, with varying levels of inconvenience

to the user of the program. Some bugs have only a

subtle effect on the program's functionality, and may

thus lie undetected for a long time. More serious bugs

may cause the program to crash or freeze. Others

qualify as security bugs and might for example enable

a malicious user to bypass access controls in order

to obtain unauthorized privileges.

When software is executed in a way different from

what the original software designers intended, this

misbehaviour is rooted in software bugs. . The portion

of bugs that are security- critical (“vulnerabilities”) is

assumed to be 1% [2], resulting to an amazingly

high figure of 350,000 vulnerabilities in Windows

2000. Detected vulnerabilities can further be divided

into those being published and unpublished.

Vulnerabilities are (software) product-related

weaknesses, for which publicly accessible databases are

available. Rooted in these are concrete security

incidents (breaches), which are system-related and

cause the actual harm. Breaches are much more

difficult to investigate, because data is scarcer.

Once vulnerability is detected, the question arises

whether to disclose it or not. Researcher argues against

disclosure unless vulnerabilities are correlated.

However, investigating the operating system FreeBSD

finds vulnerabilities being correlated regarding its’

rediscovery and argues in favour of disclosure. Using

game -theoretic models, address the question of when

 International Journal of ICT and Management

October 2015, Vol III Issue – 2 48 ISSN : 2026 - 6839

software vulnerabilities should be disclosed and

conclude that neither instant disclosure nor non-

disclosure is optimal[3][4].

C. Software Packages and Data Sources

Is there a difference between the publication of

vulnerabilities occurring in open source and closed

source applications?

Ho: There is no significance difference between

vulnerabilities disclosure of open source and close

source application.

H1: There is a difference between vulnerability

disclosure for open source and close source.

The selection of software packages to get investigated

is driven by the goals to:

i. have open and closed source software systems

that serve the same purpose (for the sake of

comparability),

ii. consider software that is known and relevant

to the community.

Each of the selected software bundles is analyzed

regarding its vulnerabilities, as published in the

National Vulnerability Database (NVD) of the

National Institute of Standards and Technology

(NIST). This database is one of the most

comprehensive vulnerability databases. I analyze

each software product regarding the number of

vulnerabilities, the disclosure rate, and the severity of

vulnerabilities.

Application Type Product

Browsers
Internet Explorer 7

Mozilla Firefox 3.0

Email Client
Ms Outlook 12

Thunderbird 3.0

Web Server
IIS 4.0

Apache 2.2

Office
MS Office 2007

Open Office 3

Operating Systems
Windows 7

Red Hat Linux 6

Database Management

Systems

PostgreSQL 9

Oracle 11g

Table1: Bundle of applications for the study.

D. Vulnerability Measurement

In measuring vulnerability “mean time between

vulnerability disclosures” (MTBVD) was defined as

the number of days since a software is release

divided by the number of published vulnerabilities.

With regard to determining the MTBVD,

consideration was given to only those vulnerabilities

that have been published after the release date and

limited between January 2010 and February 2015.

This does not include vulnerabilities before the

current release version of the software in question.

A simple comparison of MTBVD is not assumed

to provide reliable results regarding the level of

security, because vulnerability detection and

publication alone could be influenced by other

factors too.

III. DATA COLLECTION

In the few empirical studies on software security [1]

[7][8], the application types mainly considered are

operating systems, web browsers, web servers, email

clients, and database management systems. Adopting

this focus, this study considers two operating systems

(Windows 7, Red Hat Enterprise Linux 6), two web

browsers (Internet Explorer 7, Mozilla Firefox 3),

two web servers (IIS 6, Apache 3), two email clients

(MS Outlook 12, Thunderbird 3), two database

management systems (PostgreSQL 9, Oracle 11g),

and two office products (MS Office 2007, Open Office

3).

A. Vulnerability sources
I consider those vulnerabilities that have been

accepted as Common Vulnerabilities and Exposures

(CVE) by MITRE. Each of these vulnerabilities has a

unique identifier, e.g. CVE-2015-0836. CVE

identifiers are also used as references in many other

vulnerability databases. The NVD feeds contain data

on the severity and type of vulnerabilities. Data

excludes misconfigurations (CCE = Common

Configuration Enumeration).

Overall, I consider two types of vulnerabilities:

those that are explicitly applicable to the software

version under consideration, and those that affect all

versions of the particular software and that have been

published after the release date of the considered

version. The data used in this work refer to

vulnerabilities that have been published prior to 28

February 2015 and after 01 January 2010.

The National Vulnerability Database is the U.S.

government repository of standards-based vulnerability

management data represented using the Security

Content Automation Protocol (SCAP). This data

enables automation of vulnerability management,

security measurement, and compliance. NVD includes

databases of security checklists, security related

software flaws, misconfigurations, product names, and

impact metrics. NVD supports the Information Security

Automation Program (ISAP). In addition to providing a

list of Common Vulnerabilities and Exposures (CVEs),

the NVD scores CVEs to quantify the risk of

vulnerabilities, calculated from a set of equations based

on metrics such as access complexity and availability of

a remedy.

 International Journal of ICT and Management

October 2015, Vol III Issue – 2 49 ISSN : 2026 - 6839

IV. RESULT ANALYSIS

Figure 2: Vulnerability Disclosures by Years

Table 2: Vulnerability disclosure by individual applications by years.

Figure 4: Showing Statistic of the applications

Table 3: MTBVD and market shares

Table 4: Bundle of applications and levels of vulnerability.

V. DISCUSSIONS

A total of 2399 vulnerabilities were published between

the defined dates for the selected bundles of study. 2013

recorded the highest made up of (578) 24 percent of

total vulnerabilities across the various years and 2015

recorded (140) 5.8 percent.

A total of 1241 constituting 51.7 percent of all

vulnerabilities for the study period was open source

while 1158 constituting 48.3 was closed source for the

subjects under study. This shows that software’s

performing the same task and of the widely used open

source vulnerabilities are to be found faster and patched

than that of close source.

Web Servers: Apache 2.2 been open source web

servers have 17 recorded vulnerabilities with 17.6

percent been severely high while Internet Information

Services (IIS 6.0) closed source recorded 9

vulnerabilities with 11.1 percent.

The web server subjects in this study shows that open

source web servers have more vulnerabilities and their

level of severity is more than that of close source. This

can also be due to the fact that the usage of the open

Apache2.

2 IIS 6.0

Internet

Explorer

Mozilla

Firefox

Office

2007

Open

Office Oracle 11g

Microsoft

Outlook 12 Thunderbird 3.0

Postgre

SQL 9

Red Hat

Linux 6

Window

s 7

Grand

Total

2010 4 6 2 106 55 8 33 5 62 7 4 64 356

2011 7 0 0 98 30 9 49 0 65 1 6 102 367

2012 2 1 18 162 19 6 26 0 147 9 4 44 438

2013 4 1 129 149 17 4 14 4 113 6 34 100 575

2014 0 1 243 108 10 2 41 5 64 9 4 36 523

2015 0 0 52 28 5 0 7 4 8 0 1 35 140

Grand Total 17 9 444 651 136 29 170 18 459 32 53 381 2399

0.0

5.0

10.0

Bar graph showing statistical Calculation based on

Vulnerabilities

Mean Median Sd

Application
Number of

Vulnerabilities
Released

Year
Number
of Years

Number of
Days

MTBVD
Current

Usage/Market
Share

IIS 6.0 9 2007 8 2921.94 324 13.2***

Apache2.2 17 2005 10 3652.42 214.4 58.5***

Microsoft Outlook
12 18 2007 8 2921.94 162.3 ******5.0

Thunderbird 3.0 459 2009 5 1821.21 4.0 No data

Office 2007 136 2007 8 2921.94 21.5 72.00*****

Open Office 3 29 2008 6 2556.7 88.2 21.2*****

Red Hat Linux 6.0 53 2010 4 1460.97 27.6 1.53*

Windows 7 381 2009 5 1826.21 4.8 55.99*

Oracle 11g 170 2007 8 2921.94 17.2 32.8****

PostgreSQL 9.0 32 2010 4 1460.97 45.7 5.6****

Internet Explorer 7 444 2006 9 3287.18 7 57.3**

Mozilla Firefox 3.0 651 2008 6 2556.7 18.8 11.6**

Bundles Application Low Medium High Grand Total
Percentage

Severely high

Web Servers

Apache2.2 2 12 3 17 17.6

IIS 6.0 3 5 1 9 11.1

Browsers

Internet Explorer 7 12 426 6 444 1.4

Mozilla Firefox 3.0 309 318 24 651 3.7

Office

Office 2007 3 133 0 136 0.0

Open Office 3 3 26 0 29 0.0

Email Client

Microsoft Outlook 12 1 11 6 18 33.3

Thunderbird 3.0 232 217 10 459 2.2

Database
Management

System

Oracle 11g 95 46 29 170 17.1

PostgreSQL 9.0
21 11 0 32 0.0

Operating

Systems

Red Hat Linux 6.0 18 30 5 53 9.4

Windows 7 242 131 8 381 2.1

 Total 941 1366 92 2399 3.8

 International Journal of ICT and Management

October 2015, Vol III Issue – 2 50 ISSN : 2026 - 6839

source is more wide spread than that of the close source

web servers.

Browsers: Mozilla Firefox 3.0 open source have 651

vulnerabilities with 3.7 percent been severely high and

48.8 percent medium severe while Internet Explorer 7.0

closed source have a total of 444 vulnerabilities with

1.4 percent been severely high and 96 percent falling in

the medium severity bracket.

The concept of whether more vulnerability will be

disclose in open source compared to close source is

established by the facts from the browsers selected in

this study. It is also instructive to note that the level of

the severity of the vulnerabilities in open source is more

than that of close source.

Office: Open Office 3.0 open source had 29

vulnerabilities recorded for the study period and no

severity while Microsoft Office 7 closed source had 136

vulnerabilities with no severity vulnerabilities. Most of

the vulnerabilities for these applications were found

within the medium bracket.

The level of vulnerability disclosure in the office

applications selected in this study, shows that close

source have less vulnerabilities disclose while close

source have more vulnerability. It is also reveling that

despite the fact of close source office have more

vulnerabilities compared to open source, none of them

recorded high severity vulnerabilities. This is highly

significant.

Email Client: Thunderbird 3.0 open source with 459

vulnerabilities and 2.2 percent severity vulnerabilities

while Microsoft Outlook 12 close source have 18

vulnerabilities with 33.3 percent level of severity.

The subjects selected under email client results are very

interesting. The open source thunderbird with as high as

459 disclosed vulnerabilities have only 2.2 percent

severity rate compared to 33.3 percent of high severity

rate for 18 vulnerabilities disclosed for close source.

This presupposes that the more vulnerability likely to

be discovered for the close source software will put it in

a very high risk area. The assertion that more

vulnerabilities will be disclose in open source still

stands.

Database Management System: PostgreSQL 9.0 open

source with a total of 32 vulnerabilities and no level of

severities while Oracle 11g close source has 170

vulnerabilities and 17.1 percent level of severity.

The database management systems subjects’ results are

reveling. PostgreSQL have thirty-two vulnerability

without any high severity vulnerabilities while oracle

has as much as 170 published vulnerabilities with 17.1

percent high vulnerabilities. In conclusion based on the

results database management systems close source is

much susceptible to vulnerability disclosure than that of

open source.

Operating Systems: Red Hat Linux 6.0 open source

with a total of 53 vulnerabilities and 9.7 percent level of

severity while Windows 7 had 381 vulnerabilities with

2.1 percent level of severity.

The vulnerability disclosure in the operating systems

shows that despite the fact that less vulnerability were

found in open source operating systems there is high

percentage severity of these vulnerabilities compared to

the close source which have high number of

vulnerability disclosure with less percentage of high

severity vulnerability.

In conclusion only three open source applications by

the bundles which meets the assertion that open source

software are more likely to have more vulnerability

disclosures than close source. They are Apache,

Mozilla Firefox and Thunderbird in the web servers,

Email client and browsers bundles.

 Apache 2.2 which is open source software recorded the

highest number of days (214) for MTBVD for the set of

subjects studied. This is based on the backdrop of 58.5

percent market share or usage as at February, 2015

(W3Tech 2015). In the same perspective Thunderbird

another open source recorded the least number of days

(4) before the first vulnerabilities was disclosed. It is

worth nothing that the other open source software’s

namely, Mozilla Firefox 3.0, Open Office 3.0,

PostgreSQL 9.0 and Red Hat Linux 6.0 has 19, 88, 17

and 28 MTBVD respectively.

However, Internet Information Services (IIS 6.0) close

source recorded the highest number of days (324) for

MTBVD while Windows 7 another close source

software have its first vulnerabilities disclosed within 7

days.

Juxtaposing the MTBVD with the usage or market

share of the application, it is not far fetch to

categorically state that the more attractive or the usage

of the application the likely hood of finding a very low

MTBVD. But the data available does not support this

assertion. Therefore I conclude that vulnerability

disclosure have no direct relationship between market

share and methodology of developing the application.

The classification of severity of vulnerability used for

the study was based on what is used in the NVD which

is the data source for the study.

1. Vulnerabilities are labeled "Low" severity if they

have a CVSS base score of 0.0-3.9.

2. Vulnerabilities will be labeled "Medium" severity if

they have a base CVSS score of 4.0-6.9.

 International Journal of ICT and Management

October 2015, Vol III Issue – 2 51 ISSN : 2026 - 6839

3. Vulnerabilities will be labeled "High" severity if they

have a CVSS base score of 7.0-10.0.

The medians of medians reveal that the vulnerabilities

of office products and Browser and are much more

severe (9.3) than those of Email clients (7.2), while the

values of the other application types are close to each

other. The empirical analysis shows differences in

terms of vulnerability severity for different

application types. However, the number of

investigated software bundles is still too low to deduce

general hypotheses. An investigation of the type of

vulnerabilities might reveal the reasons for the observed

differences.

When we determine the medians of medians of open

source software (6.5) and closed source software (7.0)

and also the corresponding medians of the percentage

of highly severe vulnerabilities (3.4 and 4.3,

respectively), the first impression is that open source

software is more secure in terms of the level of

severity. Summing up, I find no significant

difference between the severity of vulnerabilities in

open source and closed source software. This

conclusion is based on the two tailed t test statistics of

P = 0.127 which is not significant.

VI. CONCLUSION AND FUTURE WORKS

The study was conducted to find an empirical data to

establish the whether there is a difference between

vulnerability disclosure in open source or close source

application. The fact shows that a total of 1241

constituting 51.7 percent of all vulnerabilities for the

study period ware open source while 1158 constituting

48.3 was closed source for the subjects under study. On

the face of this fact it is easy to easily conclude that

disclosure of vulnerability in open source is higher than

close source, but the sample for the study is not that

large so it cannot be generalized. In addition only three

open source applications by the bundles which meets

the assertion that open source software are more likely

to have more vulnerability disclosures than close

source. They are Apache, Mozilla Firefox and

Thunderbird in the web servers, Email client and

browsers bundles.

The is the need to do in-depth research into areas of

particular vulnerability for open source and close

source, Vulnerability development over time and

software line of codes to determine their confounding

factors on vulnerability development and disclosure.

VI. REFERENCES

[1] Alhazmi, O., Malaiya, Y., & Ray, I. (2007).

 Measuring, analyzing and predicting security

 vulnerabilities in software systems:

 Computers & Security, 26, 3, 219-228.

[2] Anderson, R. (2001). Why Information

 Security is Hard - An Economic Perspective,

 in Proceedings of the Seventeenth Computer

 Security Applications Conference: New

 Orleans, December 10-14, 358-365.

[3] Arora, A., Krishnan, R., Nandkumar, A.,

 Telang, R., & Yang, Y. (2004). Impact of

 Vulnerability Disclosure and Patch

 Availability - An Empirical Analysis, in

 Proceedings of the Third Workshop on the

 Economics of Information Security: University

 of Minnesota, May 13-14, 1-20.

[4] Arora, A., Telang, A., & Xu, H. (2004).

 "Optimal Policy for Software Vulnerability

 Disclosure", in Proceedings of the Third

 Annual Workshop on Economics and

 Information Security: University of

 Minnesota, May 13-14, 52-59.

[5] Christensen, Mark J., & Richard H.

 Thayer(2001). The Project Manager's

 Guide to Software Engineering's Best

 Practices. Los Alamitos: IEEE.

[6] Costa, D., & Scott, V. (2005). "CNET

 editors' review". CNET Reviews.

[7] Hiran, K.K., & Doshi, R.(2014). “The

 Proliferation of Smart Devices on Mobile

 Cloud Computing” , LAMBERT Academic

 Publishing ISBN: 3659573914

[8] Hiran, K. K., Doshi, R. & Rathi, R.(2014).

 “Security & Privacy Issues of Cloud &

 Grid Computing Networks”, International

 Journal on Computational Sciences &

 Applications,4(1), 83-91.

[9] Schechter, S.(2004). Toward Econometric

 Models of the Security Risk from Remote

 Attacks. Workshop on the Economics of

 Information Security.

[10] Tute, C. (2014). Handling Security Issues In

 Open Source Projects; Retrieved 12 24,

 2014 from,

 https://robots.thoughtbot.com/handling-

 security-issues-in-open-source-projects.

[11] Witten, B., Landwehr, C., & Caloyannidis,

 M. (2001). Does open source improve system

 security?, in IEEE Software,18,5, 57-61.

